Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:41:32.174Z Has data issue: false hasContentIssue false

THE EFFECT OF A NEEM (AZIDIRACHTA INDICA) BASED INSECTICIDE ON SURVIVAL AND DEVELOPMENT OF JUVENILE WESTERN CHERRY FRUIT FLY (RHAGOLETIS INDIFFERENS) (DIPTERA: TEPHRITIDAE)

Published online by Cambridge University Press:  31 May 2012

E.J. vanRanden
Affiliation:
Centre for Pest Management, Simon Fraser University, Vancouver, British Columbia, Canada V5A 1S6
B.D. Roitberg
Affiliation:
Centre for Pest Management, Simon Fraser University, Vancouver, British Columbia, Canada V5A 1S6

Abstract

In the laboratory a proprietary, neem-based insecticide formulation (NBI) was evaluated as a potential pest management tool for the western cherry fruit fly, Rhagoletis indifferens Curran (WCFF). NBI was tested for its potential effects on survival and development of juvenile WCFF. Incorporation of NBI into an artificial larval diet resulted in a decrease in the formation of pupae and subsequent adult emergence. Late third instar larvae exposed to NBI in sand were able to form puparia; however, the numbers of adults and pupae developing inside the puparia were decreased at concentrations as low as 0.05% NBI. Well-timed root drenches with NBI could control R. indifferens by disrupting pupation. Applied in this manner, NBI may provide cherry orchardists with an effective, new control tactic.

Résumé

Au laboratoire une formulation d’un insecticide à base de margousier (NBI) a été évaluée comme outil potentiel pour la lutte dirigée contre la mouche des cerises (WCFF), Rhagoletis indifferens Curran. Les effets du NBI sur la survie et le développement des WCFF juvéniles ont été étudiés. Le NBI incorporé à une diète artificielle pour les larves a causé une diminution du nombre de pupes formées, ainsi que du nombre d’adultes. Les larves exposées au NBI dans le sable à la fin du troisième stade larvaire ont formé des coques de nymphose; par contre, des concentrations aussi faibles que 0,05% NBI ont fait diminuer le nombre de pupes et d’adultes qui se sont développées à l’intérieur des coques de nymphose. Un traitement de NBI par bassinage des racines au moment opportun pourrait aider à lutter contre R. indifferens en interrompant la pupaison. Appliqué ainsi, le NBI pourrait procurer aux producteurs de cerises une nouvelle méthode de contrôle efficace.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Kareem, A., Cezanne, R.C., Boncodin, M.E.M., Krishnasamy, V., and Seshu, D.V.. 1989. Neem as a seed treatment for rice before sowing. Effects on two homopterous insects and seeding vigour. Journal of Economic Entomology 82: 12191223.CrossRefGoogle Scholar
AliNiazee, M.T. 1973. Biology and control of the Western Cherry Fruit Fly in Oregon. Proceedings of the Oregon Horticultural Society 64: 7578.Google Scholar
AliNiazee, M.T. 1974. The Western cherry fruit fly, Rhagoletis indifferens, 1. Distribution of the diapausing pupae in the soil. The Canadian Entomologist 106: 909912.CrossRefGoogle Scholar
AliNiazee, M.T. 1986. Management of Rhagoletis indifferens in western North America. pp. 197206in Cavalloro, R. (Ed.), Fruit Flies of Economic Importance 84. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
AliNiazee, M.T., and Brown, R.D.. 1977. Laboratory rearing of the Western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae): oviposition and larval diets. The Canadian Entomologist 109: 12271234.CrossRefGoogle Scholar
Ascher, K.R.S. 1993. Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Archives of Insect Biochemistry and Physiology 22: 433449.CrossRefGoogle Scholar
Burditt, A.K. Jr., and Hungate, F.P.. 1988. Gamma irradiation as a quarantine treatment for cherries infested by Western Cherry Fruit Fly (Diptera: Tephritidae). Journal of Economic Entomology 81: 859862.CrossRefGoogle Scholar
Day, R.W., and Quinn, G.P.. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59: 433463.CrossRefGoogle Scholar
Harris, E.J. 1989. World Crop Pests 3A: Fruit Flies their Biology, Natural Enemies and Control. pp. 9199in Robinson, A.S., and Hooper, G. (Eds.). Elsevier, Amsterdam, The Netherlands.Google Scholar
Hoelmer, K.A., Osborne, L.S., and Yokomi, R.K.. 1990. Effects of neem extracts on beneficial insects in greenhouse culture. pp. 100105in Locke, J.C., and Lawson, R.H. (Eds.), Neem's Potential in Pest Management Programs. Proceedings of the U.S. Department of Agriculture Research Service 86.Google Scholar
Jacobson, M. (editor). 1989. Focus on phytochemical pesticides. Vol. 1. The neem tree. CRC Press, Boca Raton, FL.Google Scholar
Larew, H.G., Knodel-Montz, J.J., Webb, R.F., and Warthen, J.D.. 1985. Liriomyza trifolli (Burgess) (Diptera: Agromyzidae) control on chrysanthemum by neem seed extracts applied to soil. Journal of Economic Entomology 78: 8084.CrossRefGoogle Scholar
Lowery, D.T., and Isman, M.B.. 1996. Inhibition of aphid (Homoptera: Aphidadae) reproduction by neem seed oil and azadirachtin. Journal of Economic Entomology 89: 602607.CrossRefGoogle Scholar
Lustzig, P.A. (commissioner). 1990. Report of the commission of inquiry–British Columbia tree fruit industry. Agriculture Canada.Google Scholar
Marion, D.F., Larew, H.G., Knodel, J.J., and Natoli, W.. 1990. Systemic activity of neem extract against the birch leaf miner. Journal of Aboriculture 16: 1216.Google Scholar
Mordue, A.J. (Luntz), and Blackwell, A.. 1993. Azadirachtin: an update. Journal of Insect Physiology 39: 903924.CrossRefGoogle Scholar
Naumann, K., and Isman, M.B.. 1995. Evaluation of neem Azadirachta indica seed extracts and oils as oviposition deterrents to noctuid moths. Entomologia Experimentalis et Applicata 76: 115120.CrossRefGoogle Scholar
Naumann, K., Currie, R.W., and Isman, M.B.. 1994. Evaluation of the repellent effects of a neem insecticide on foraging honey bees and other pollinators. The Canadian Entomologist 126: 225230.CrossRefGoogle Scholar
Osman, M.Z., and Port, G.R.. 1990. Systemic action of neem seed substances against Pieris brassicae. Entomologia Experimentalis et Applicata 54: 297300.CrossRefGoogle Scholar
Prokopy, R.J., Reissig, W.H., and Moericke, V.. 1976. Marking pheromones deterring repeated oviposition in Rhagoletis flies. Entomologia Experimentalis et Applicata 20: 170178.CrossRefGoogle Scholar
Rembold, H. 1989. Isomeric azadirachtins and their mode of action. pp. 4768in Jacobson, M. (Ed.), Focus on Phytochemical Pesticides. Vol. 1. The Neem Tree. CRC Press, Boca Raton, FL.Google Scholar
Rembold, H. 1995. Growth and metamorphosis. pp. 177194in Schmutterer, H. (Ed.), The Neem Tree Azadirachta Indica A. Juss., and Other Meliaceous Plants: Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes. VCH, Weinheim, Federal Republic of Germany.Google Scholar
Roitberg, B.D., and Angerilli, N.P.D.. 1989. Management of temperate-zone deciduous fruit pests: applied behavioural ecology. pp. 2957in Russell, G.E. (Ed.), Management and Control of Invertebrate Crop Pests. Intercept Press, Amsterdam, The Netherlands.Google Scholar
SAS Institute Inc. 1994. SAS system for personal computers, release 6.10. SAS Institute Inc., Carey, NC.Google Scholar
Saul, S.H., Tsuda, D., and Wong, T.T.Y.. 1983. Laboratory and field trials of soil applications of methoprene and other insecticides for control of the Mediterranean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 76: 174177.CrossRefGoogle Scholar
Schmutterer, H. 1988. Potential of azadirachtin-containing pesticides for integrated pest control in developing and industrialized countries. Journal of Insect Physiology 34: 713719.CrossRefGoogle Scholar
Schmutterer, H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271297.CrossRefGoogle ScholarPubMed
Schmutterer, H. (editor). 1995. The neem tree Azadirachta indica A. Juss., and other meliaceous plants: sources of unique natural products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, Federal Republic of Germany.CrossRefGoogle Scholar
Stark, J.D., and Walter, J.F.. 1996. Neem oil and neem oil components affect the efficacy of commercial neem insecticides. Journal of Agricultural and Food Chemistry 43: 507512.CrossRefGoogle Scholar
Stark, J.D., Vargas, R.I., and Thalman, R.K.. 1990. Azadirachtin: effects on metamorphosis, longevity, and reproduction of three tephritid fruit fly species (Diptera: Tephritidae). Journal of Economic Entomology 83: 21682174.CrossRefGoogle Scholar
Stark, J.D., Wong, T.T.Y., Vargas, R.I., and Thalman, R.K.. 1992. Survival, longevity, and reproduction of Tephritid fruit fly parasitoids (Hymenoptera: Braconidae) reared from fruit flies exposed to azadirachtin. Journal of Economic Entomology 85: 11251129.CrossRefGoogle Scholar
Steffens, R.J., and Schmutterer, H.. 1982. The effect of a crude methanolic neem (Azadirachtin indica) seed kernel extract on metamorphosis and quality of adults of the Mediterranean fruit fly, Ceratitis capitata Wied. (Diptera: Tephritidae). Zeitschrift fur Angewandte Entomologie 94: 98103.CrossRefGoogle Scholar
Sundaram, K.M.S., Campbell, R., Sloane, L., and Studens, J.. 1995. Uptake, translocation, persistence and fate of azadirachtin in aspen plants (Populus tremuloides Michx.) and its effect on pestiferous two-spotted spider mite (Tetranychus urticae Koch). Crop Protection 14: 415421.CrossRefGoogle Scholar