Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:12:11.810Z Has data issue: false hasContentIssue false

Early Eocene big headed flies (Diptera: Pipunculidae) from the Okanagan Highlands, western North America

Published online by Cambridge University Press:  02 January 2014

S. Bruce Archibald*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada Museum of Comparative Zoology, Cambridge, Massachusetts, United States of America Royal BC Museum, Victoria, British Columbia, Canada
Christian Kehlmaier
Affiliation:
c/o Senckenberg, Senckenberg Natural History Collections Dresden, Museum of Zoology, Dresden, Germany
Rolf W. Mathewes
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
*
1Corresponding author: (e-mail: [email protected]).

Abstract

Three new species of Pipunculidae (Diptera) are described (one named), from the early Eocene (Ypresian) Okanagan Highlands of British Columbia, Canada and Washington State, United States of America: Metanephrocerus belgardeaenew species from Republic, Washington; and Pipunculidae species A and Pipunculinae species A from Quilchena, British Columbia. We re-describe the late Eocene (Priabonian) species Protonephrocerus florissantius Carpenter and Hull from Florissant, Colorado, United States of America, and assign it to a new genus proposed here, Priabonanew genus. Pipunculinae species A is the oldest known member of the family whose wing lacks a separated M2 vein; previously this had been known in species only as old as Miocene Dominican amber. This is a presumably derived character state that is predominant in modern species. Molecular analysis indicates an origin of the Pipunculidae in the Maastrichtian; the morphological and taxonomic diversity seen here in the Ypresian is consistent with an early radiation of the family. This is concordant with the radiation of Auchenorrhyncha, upon which they mostly prey, which is in turn associated with the early Paleogene diversification of angiosperm-dominated forests recovering from the K-Pg extinction event.

Résumé

Nous décrivons trois nouvelles espèces de Pipunculidae (Diptera), dont une est nommée, de l’éocène inférieur (yprésien) des terres hautes de l'Okanagan en Colombie-Britannique, Canada, et de l’état de Washington, États-Unis d'Amérique: Metanephrocerus belgardeaenouvelle espèce de Republic, Washington et Pipunculidae espèce A et Pipunculinae espèce A de Quilchena, Colombie-Britannique. Nous décrivons de nouveau l'espèce Protonephrocerus florissantius Carpenter et Hull provenant de l’éocène supérieur (priabonien) de Florissant, Colorado, États-Unis d'Amérique, et la plaçons dans le nouveau genre Priabonanouveau genre que nous proposons ici. Pipunculinae espèce A est le membre connu le plus ancien de la famille dont l'aile ne possède pas de nervure M2 séparée; cette caractéristique n'avait pas jusqu’à présent été signalée plus antérieurement que chez des espèces de l'ambre du miocène de la République Dominicaine. Il s'agit vraisemblablement de l’état dérivé du caractère qui prédomine chez les espèces modernes. Une analyse moléculaire situe l'origine des Pipunculidae au maastrichtien; la diversité morphologique et taxonomique observée ici dans l'yprésien s'accorde bien avec une radiation hâtive de la famille. Cela est aussi en accord avec la radiation des Auchenorrhyncha, dont la plupart des Pipunculidae se nourrissent, et qui est elle-même associée à la diversification au paléogène inférieur des forêts dominées par les angiospermes qui se remettent de l'extinction K-Pg.

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczél, M. 1948. Grundlagen einer Monographie der Dorilaiden (Diptera). Dorilaiden-Studien VI. Acta Zoologica Lilloana, 6: 5168.Google Scholar
Archibald, S.B., Bossert, W.H., Greenwood, D.R., Farrell, B.D. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36: 374398.Google Scholar
Archibald, S.B., Cover, S.D., Moreau, C.S. 2006. Bulldog ants of the Eocene Okanagan Highlands, and the history of the subfamily (Hymenoptera: Formicidae: Myrmeciinae). Annals of the Entomological Society of America, 99: 487523.CrossRefGoogle Scholar
Archibald, S.B., Greenwood, D.R., Mathewes, R.W. 2012. Seasonality, montane beta diversity, and Eocene insects: testing Janzen's dispersal hypothesis in an equable world. Palaeogeography, Palaeoclimatology, Palaeoecology, 371: 18.Google Scholar
Archibald, S.B., Greenwood, D.R., Smith, R.Y., Mathewes, R.W., Basinger, J.F. 2011. Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State). Geoscience Canada, 38: 145154.Google Scholar
Archibald, S.B.Mathewes, R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology, 78: 14411462.Google Scholar
Bonde, N., Andersen, S., Hald, N., Jakobsen, S.L. 2008. Danekræ – Danmarks bedste fossiler. Gyldendal, Copenhagen, Denmark.Google Scholar
Carpenter, F.M.Hull, F.M. 1939. The fossil Pipunculidae. Bernstein-Forschungen, 4: 817.Google Scholar
Chambers, L., Pringle, M., Fitton, G., Larsen, L.M., Pedersen, A.K., Parrish, R. 2003. Recalibration of the Palaeocene-Eocene boundary (P-E) using high precision U-Pb and Ar-Ar isotopic dating. EGS-AGU-EUG Joint Assembly, Nice, 6–11 April 2003. Geophysical Research Abstracts 5: 9681, Copernicus Publications, Göttingen, Germany.Google Scholar
Cockfield, W.E. 1948. Geology and mineral deposits of Nicola map-area, British Columbia. Geological Survey of Canada Memoir, 249: 1164.Google Scholar
Currano, E.D., Wilf, P., Wing, S.L., Labandeira, C.C., Lovelock, E.C., Royer, D.L. 2008. Sharply increased insect herbivory during the Paleocene–Eocene thermal maximum. Proceedings of the National Academy of Sciences of the United States of America, 105: 19601964.Google Scholar
De Meyer, M. 1995. Short note on Fossil Pipunculidae (Diptera) from Dominican Amber. Journal of the New York Entomological Society, 103: 208214.Google Scholar
Evanoff, E., McIntosh, W.C., Murphey, P.C. 2001. Stratigraphic summary and 40Ar/39Ar geochronology of the Florissant Formation, Colorado. In Fossil flora and stratigraphy of the Florissant Formation, Colorado. Volume 1. Edited by E. Evanoff, K. Gregory-Wodzicki, and K. Johnson. Proceedings of the Denver Museum of Nature and Science, (ser. 4). Pp. 1–16.Google Scholar
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. 2012. The geologic time scale 2012. Volumes 1–2. Elsevier, Amsterdam, The Netherlands.Google Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W., Moss, P. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42: 167185.CrossRefGoogle Scholar
Grimaldi, D. 1999. The co-radiation of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Gardens, 86: 373406.CrossRefGoogle Scholar
Grimaldi, D.Engel, M.S. 2005. Evolution of the insects. Cambridge University Press, New York, New York, United States of America.Google Scholar
Hardy, D.E. 1987. Pipunculidae. In Manual of Nearctic Diptera. Volume 2. Agriculture Canada Monograph No. 28. Edited by J.F. McAlpine, B.V. Peterson, G.E. Shewell, H.J. Teskey, J.R. Vockeroth, and D.M. Wood. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 745748.Google Scholar
Iglesias, A., Wilf, P., Johnson, K.R., Zamuner, A.B., Cúneo, N.R., Matheos, S.D., Singer, B.S. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology, 35: 947950.Google Scholar
Iturralde-Vinent, M.A.MacPhee, R.D.E. 1996. Age and paleogeographical origin of Dominican amber. Science, 273: 18501852.CrossRefGoogle Scholar
Johnson, K.R.Ellis, B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous–Tertiary boundary. Science, 296: 23792383.Google Scholar
Kehlmaier, C. 2005. Taxonomic revision of European Eudorylini (Insecta, Diptera, Pipunculidae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF), 41: 45353.Google Scholar
Kehlmaier, C. 2006. The west-Palaearctic species of Jassidophaga Aczél and Verrallia Mik described up to 1966 (Diptera: Pipunculidae). Stuttgarter Beiträge zur Naturkunde – Serie A, 697: 134.Google Scholar
Kehlmaier, C.Assmann, T. 2010. Molecular analysis meets morphology-based systematics – a synthetic approach for Chalarinae (Insecta: Diptera: Pipunculidae). Systematic Entomology, 35: 181195.Google Scholar
Kehlmaier, C.Floren, A. 2010. Pipunculidae (Diptera) collected by canopy-fogging in the Białowieża Forest (Poland), including first host records and larval descriptions of two Palaearctic Nephrocerus Zetterstedt. Studia Dipterologica, 16: 169181.Google Scholar
Koenig, D.P.Young, C.W. 2007. First observation of parasitic relations between big-headed flies, Nephrocerus Zetterstedt (Diptera: Pipunculidae) and crane flies, Tipula Linnaeus (Diptera: Tipulidae: Tipulinae), with larval and puparial descriptions for the genus Nephrocerus. Proceedings of the Entomological Society of Washington, 109: 5265.Google Scholar
Labandeira, C.C. 2002. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37: 3159.Google Scholar
Labandeira, C.C., Johnson, K.R., Wilf, P. 2002. Impact of the terminal Cretaceous event on plant–insect associations. Proceedings of the National Academy of Sciences of the United States of America, 99: 20612066.Google Scholar
Meunier, F. 1903. Les Pipunculidae de l'ambre baltique. Revue Scientifique du Bourbonnais, 16: 148151.Google Scholar
Meyer, H.W. 2003. The fossils of Florissant. Smithsonian Books, Washington, DC, United States of America.Google Scholar
Moss, P.T., Greenwood, D.R., Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia – Washington State) from palynology. Canadian Journal of Earth Sciences, 42: 187204.Google Scholar
Perkovsky, E.E., Rasnitsyn, A.P., Vlaskin, A.P., Taraschuk, M.V. 2007. A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. African Invertebrates, 48: 229245.Google Scholar
Rafael, J.A. 1986. Amazunculus, a new genus from the Amazon basin (Diptera: Pipunculidae). Amazoniana, 10: 1519.Google Scholar
Rafael, J.A.Menezes, M.D. da S. 1999. Taxonomic review of Costa Rican Pipunculidae (Insecta: Diptera). Revista de Biología Tropical, 47: 513534.Google Scholar
Rafael, J.A.Skevington, J.H. 2010. Pipunculidae (big-headed flies). In Manual of Central American Diptera. Volume 2. Edited by B.V. Brown, A. Borkent, J.M. Cumming, D.M. Wood, N.E. Woodley, and M.A. Zumbado. NRC Research Press, Ottawa, Ontario, Canada. Pp. 793803.Google Scholar
Scudder, S.H. 1890. The tertiary insects of North America. United States Geological Survey of the Territories, Washington, DC, United States of America.Google Scholar
Scudder, S.H. 1895. Canadian fossil insects. Contributions to Canadian Paleontology. Volume 2. Geological Survey of Canada, Ottawa, Ontario, Canada.Google Scholar
Skevington, J.Marshall, S.A. 1997. First record of a big-headed fly, Eudorylas alternatus (Cresson) (Diptera: Pipunculidae), reared from the subfamily Cicadellinae (Homoptera: Cicadellidae), with an overview of pipunculid-host associations in the Nearctic Region. The Canadian Entomologist, 129: 387398.Google Scholar
Skevington, J.H.Yeates, D.K. 2000. Phylogeny of the Syrphoidea (Diptera) inferred from mtDNA sequences and morphology with particular reference to classification of the Pipunculidae (Diptera). Molecular Phylogenetics and Evolution, 16: 212224.CrossRefGoogle ScholarPubMed
Skevington, J.H.Yeates, D.K. 2001. Phylogenetic classification of Eudorylini (Diptera: Pipunculidae). Systematic Entomology, 26: 421452.Google Scholar
Smith, D.M. 2008. A comparison of plant-insect associations in the middle Eocene Green River Formation and the Upper Eocene Florissant Formation and their climatic implications. In SPE435: Paleontology of the Upper Eocene Florissant Formation, Colorado. Edited by H.W. Meyer and D.M. Smith. Geological Society of America Special Paper 435, Geological Society of America, Boulder, Colorado, United States of America. Pp. 89–103.Google Scholar
Smith, R.Y., Basinger, J.F., Greenwood, D.R. 2012. Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada. Palaeobiodiversity and Palaeoenvironments, 92: 309328.Google Scholar
Villeneuve, M.Mathewes, R. 2005. An early Eocene age for the Quilchena fossil locality, southern British Columbia. Geological Survey of Canada, Current Research 2005-A4: 1–7 pp. Available from ftp2.cits.rncan.gc.ca/pub/geott/ess_pubs/221/221300/cr_2005_a04.pdf [accessed 29 September 2013].Google Scholar
Wappler, T., Currano, E.D., Wilf, P., Rust, J., Labandeira, C.C. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proceedings of the Royal Society B, 276: 42714277.Google Scholar
Wappler, T., Labandeira, C.C., Rust, J., Frankenhäuser, H., Wilde, V. 2012. Testing for the effects and consequences of mid Paleogene climate change on insect herbivory. PLoS One, 7: e40744. doi:10.1371/journal.pone.0040744.Google Scholar
Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., Barr, N.B., Kim, J.-W., Lambkin, C., et al. 2011. Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences of the United States of America, 108: 56905695.Google Scholar
Wilf, P., Cúneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L., Obradovich, J.D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science, 300: 122125.Google Scholar
Wilf, P.Johnson, K.R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 30: 347368.Google Scholar
Wilf, P.Labandeira, C.C. 1999. Response of plant-insect associations to Paleocene–Eocene warming. Science, 284: 21532153.Google Scholar
Wilf, P., Labandeira, C.C., Johnson, K.R., Cúneo, N.R., Dilcher, D.L. 2005. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 102: 89448948.Google Scholar
Wilf, P., Labandeira, C.C., Johnson, K.R., Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313: 11121115.Google Scholar
Wolfe, J.A., Gregory-Wodzicki, K.M., Molnar, P., Mustoe, G. 2003. Rapid uplift and then collapse in the Eocene of the Okanagan? Evidence from paleobotany [CD-ROM]. In Geological Association of Canada–Mineralogical Association of Canada–Society of Economic Geologists, Joint Annual Meeting, Vancouver, Abstracts, 28: 533.Google Scholar
Zachos, J.C., Dickens, G.R., Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature, 451: 279283.Google Scholar