Hostname: page-component-cc8bf7c57-8cnds Total loading time: 0 Render date: 2024-12-11T23:09:31.693Z Has data issue: false hasContentIssue false

CUTICULAR HYDROCARBON ANALYSIS OF THE AQUATIC BEETLE AGABUS ANTHRACINUS MANNERHEIM (COLEOPTERA: DYTISCIDAE)

Published online by Cambridge University Press:  31 May 2012

Yves Alarie
Affiliation:
Biology Department, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6
Hélène Joly
Affiliation:
Chemistry and Biochemistry Department, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6
Danielle Dennie
Affiliation:
Chemistry and Biochemistry Department, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6

Abstract

Relatively little information concerning the cuticular hydrocarbon composition of aquatic insects is known. The cuticular hydrocarbons of the aquatic beetle Agabus anthracinus Mannerheim have been identified with the aid of a gas chromatograph coupled to a mass spectrometer. The cuticular hydrocarbon profile comprises n-alkanes (46.8%), n-alkenes (27.1%), and methylalkanes (25.9%) and is basically similar to that of terrestrial Coleoptera. However, the hydrocarbons of A. anthracinus differ in that (i) the shorter chain n-alkanes are present in higher proportion, (ii) there is a relatively lower abundance of methylalkanes, and (iii) the proportion of n-alkenes is significantly higher.

Résumé

La composition en hydrocarbures cuticulaires des insectes aquatiques demeure inconnue. Cet exposé identifie les hydrocarbures de la cuticule d’Agabus anthracinus Mannerheim, un coléoptère aquatique, à l’aide d’un chromatographe en phase gazeuse couplé à un spectromètre de masse. Les données démontrent que la cuticule d’A. anthracinus est composée de n-alcanes (46,8%), de n-alcènes (27,1%) et de méthylalcanes (25,9%) ce qui est fondamentalement semblable à la condition observée parmi les coléoptères terrestres. Les hydrocarbures d’A. anthracinus se distinguent cependant (i) par une plus grand abondance de n-alcanes à chaîne courte, (ii) une moins grande abondance de méthylalcanes et (iii) un pourcentage de n-alcènes significativement élevé.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armold, M.T., Blomquist, G.J., and Jackson, L.L., 1969. Cuticular lipids of insects, III. The surface lipids of the aquatic and terrestrial life forms of the big stone fly, Pteronarcys californica Newport. Comparative Biochemistry and Physiology B Comparative Biochemistry 31: 685692.CrossRefGoogle Scholar
Baker, J.E. 1978. Cuticular lipids of larvae of Attagenus megatoma. Insect Biochemistry 8: 287292.CrossRefGoogle Scholar
Baker, J.E., and Nelson, D.R.. 1981. Cuticular hydrocarbons of adults of the cowpea weevil, Callosobruchus maculatus. Journal of Chemical Ecology 7: 175182.CrossRefGoogle ScholarPubMed
Baker, J.E., Nelson, D.R., and Fatland, C.L.. 1979 a. Developmental changes in cuticular lipids of the black carpet beetle, Attagenus megatoma. Insect Biochemistry 9: 335339.CrossRefGoogle Scholar
Baker, J.E., Sukkestad, D.R., Nelson, D.R., and Fatland, C.L.. 1979 b. Cuticular lipids of larvae and adults of the cigarette beetle, Lasioderma serricorne. Insect Biochemistry 9: 603611.CrossRefGoogle Scholar
Baker, J.E., Woo, S.M., Nelson, D.R., and Fatland, C.L.. 1984. Olefins as major components of epicuticular lipids of three Sitophilus weevils. Comparative Biochemistry and Physiology B Comparative Biochemistry 77: 877884.CrossRefGoogle Scholar
Blomquist, G.J., and Dillwith, J.W.. 1985. Cuticular lipids. pp. 117154in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive insect physiology, biochemistry and pharmacology. Vol. 3. Permagon Press, Toronto.Google Scholar
Bursell, E., and Clements, A.N.. 1967. The cuticular lipids of the larva of Tenebrio molitor L. (Coleoptera). Journal of Insect Physiology 13: 16711678.CrossRefGoogle Scholar
Buser, H.R., Arn, H., Guerin, P., and Rauscher, S.. 1983. Determination of double bond position in monounsaturated acetates by mass spectrometry of dimethyl bisulfide adducts. Analytical Chemistry 55: 818822.CrossRefGoogle Scholar
Brown, W.V., Lacey, M.J., and Moore, B.P.. 1988. Dihydromatricariate-based triglycerides ethers, and waxed in Australian soldier beetle, Chauliognathus lugubris (Coleoptera: Cantharidae). Journal of Chemical Ecology 14: 411423.CrossRefGoogle Scholar
Chapman, R.F. 1982. The insects structure and function. Harvard University Press, Cambridge.Google Scholar
de Renobales, M., Nelson, D.R., and Blomquist, G.J.. 1991. Cuticular lipids. pp. 240251in Brinnington, K., and Retnakaran, A. (Eds.), Physiology of the insect epidermis. CSIRO Publications, Canberra, Australia.Google Scholar
Gibbs, A. 1995. Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comparative Biochemistry and Physiology B Comparative Biochemistry 112: 667672.CrossRefGoogle Scholar
Golden, K.L., Meinke, L.J., and Stanley-Samuelson, D.W.. 1992. Cuticular hydrocarbon discrimination of Diabrotica (Coleoptera: Chrysomelidae) sibling species. Annals of the Entomological Society of America 85: 561570.CrossRefGoogle Scholar
Hadley, N.F. 1977. Epicuticular lipids of the desert tenebrionid beetles Eleodes armata: seasonal and acclimatory effects on composition. Insect Biochemistry 7: 277283.CrossRefGoogle Scholar
Hadley, N.F. 1978. Cuticular permeability of desert tenebrionid beetlles: correlations with epicuticular hydrocarbon composition. Insect Biochemistry 8: 1722.CrossRefGoogle Scholar
Hadley, N.F. 1994. Water relations of terrestrial arthropods. Academic Press, San Diego, CA.Google Scholar
Hadley, N.F., and Louw, G.N.. 1980. Cuticular hydrocarbons and evaporative water loss in two tenebrionid beetles form the Namib Desert. South African Journal of Sciences 76: 298301.Google Scholar
Hebanowska, E., Malinski, E., Latowska, A., Dubis, E., Pihlaga, K., Oksman, P., Nawrot, J., and Szafranek, J.. 1990. A comparison of cuticular hydrocarbons of larvae and beetles of the Trobolium destructor. Comparative Biochemistry and Physiology B Comparative Biochemistry 96: 815819.CrossRefGoogle Scholar
Hilsenhoff, W.L. 1991. Diversity and classification of insects and Collembola. pp. 593663in Thorp, J.H., and Covich, A.P. (Eds.), Ecology and classification of North American freshwater invertebrates. Academic Press, Inc., Toronto.Google Scholar
Howard, R.W. 1992. Comparative analysis of cuticular hydrocarbons from the ectoparasitoids Cephalonomia waterstoni and Laelius utilis (Hymenoptera: Bethylidae) and their respective hosts, Cryptolestes ferrugineus (Coleoptera: Cucujidae) and Trogoderma variabile (Coleoptera: Dermestidae). Annals of the Entomological Society of America 85: 317325.CrossRefGoogle Scholar
Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication. pp. 179226in Stanley-Samuelson, D.W., and Nelson, D.R. (Eds.), Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, NE.Google Scholar
Howard, R.W., and Infante, F.. 1996. Cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia stephanoderis (Hymenoptera: Bethylidae) and its host the coffee berry borer (Coleoptera: Scolytidae). Annals of the Entomological Society of America 89: 700709.CrossRefGoogle Scholar
Howard, R.W., and Liang, Y.. 1993. Cuticular hydrocarbons of winged and wingless morphs of the ectoparasitoid Choetospila elegans Westwood (Hymenoptera: Pteromalidae) and its host, larval lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 106: 407414.CrossRefGoogle Scholar
Howard, R.W., McDaniel, C.A., and Blomquist, G.J.. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulotermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Journal of Chemical Ecology 4: 233245.CrossRefGoogle Scholar
Howard, R.W., Howard, C.D., and Colquhoun, S.. 1995. Ontogenetic and environmentally induced changes in cuticular hydrocarbons of Oryzaephilus surinamensis (Coleoptera: Cucujidae). Annals of the Entomological Society of America 88: 485495.CrossRefGoogle Scholar
Jackson, L.L., Hadley, N.F., and Blomquist, G.J.. 1980. Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: identification of the branched hydrocarbons. Insect Biochemistry 10: 399402.CrossRefGoogle Scholar
Jacob, J. 1978. Sex-dependent composition of cuticular lipids from the beetle, Rhagonycha fulva. Hoppe-Seyler's Zeitschrift fuer Physiologische Chemie 359: 653656.Google ScholarPubMed
Larson, D.J. 1989. Revision of North American Agabus Leach (Coleoptera: Dytiscidae): introduction, key to species groups, and classification of the ambiguus-, tristis-, and arcticus-groups. The Canadian Entomologist 121: 861919.CrossRefGoogle Scholar
Lockey, K.H. 1978 a. The adult cuticular hydrocarbons of Tenebrio molitor L., and Tenebrio obscurus F. (Coleoptera: Tenebrionidae). Insect Biochemistry 8: 237250.CrossRefGoogle Scholar
Lockey, K.H. 1978 b. Hydrocarbons of adult Tribolium castaneum Hbst., and Tribolium confusum Duv. (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 61: 401407.CrossRefGoogle Scholar
Lockey, K.H. 1979. Cuticular hydrocarbons of adult Alphitophagus bifasciatus (Say) and Alphitobius diaperinus (Panz) (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 64: 4656.Google Scholar
Lockey, K.H. 1980. Cuticular hydrocarbons of adult Blaps mucronata Latreille (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 67: 3340.CrossRefGoogle Scholar
Lockey, K.H. 1981. Cuticular hydrocarbons of adult Cylindrinotus laevioctostriatus (Goeze) and Phylan gibbus (Fabricius) (Coleoptera: Tenebrionidae). Insect Biochemistry 11: 549561.CrossRefGoogle Scholar
Lockey, K.H. 1982 a. Hydrocarbons of adult Onymacris plana (Péringuey) and Onymacris rugatipennis (Haag) (Coleoptera: Tenebrionidae). Insect Biochemistry 12: 6981.CrossRefGoogle Scholar
Lockey, K.H. 1982 b. Hydrocarbons of adult Onymacris marginipennis (Brême) (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 73: 275282.CrossRefGoogle Scholar
Lockey, K.H. 1982 c. Hydrocarbons of adult Physadesmia globosa (Haag) and Stenocara gracilipes (Haag) (Coleoptera: Tenebrionidae). Insect Biochemistry 12: 331342.CrossRefGoogle Scholar
Lockey, K.H. 1984 a. Hydrocarbons of Metriopus depressus (Haag) and Renatiella scrobipennis (Haag) (Coleoptera: Tenebrionidae). Insect Biochemistry 14: 6575.CrossRefGoogle Scholar
Lockey, K.H. 1984 b. Hydrocarbons of adult Zophosis (Gyrosis) species and Zophosis (Onychosis) gracilipes (Deyrolle) (Coleoptera: Tenebrionidae). Insect Biochemistry 14: 645656.CrossRefGoogle Scholar
Lockey, K.H. 1985 a. Cuticular hydrocarbons of adult Lepidochora discoidalis Gebien and Lepidochora eberlanzi Koch (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 80: 633640.CrossRefGoogle Scholar
Lockey, K.H. 1985 b. Cuticular hydrocarbons of adult Eurychora sp. (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 81: 223227.CrossRefGoogle Scholar
Lockey, K.H. 1985 c. Insect cuticular lipids. Comparative Biochemistry and Physiology B Comparative Biochemistry 81: 263273.CrossRefGoogle Scholar
Lockey, K.H. 1988. Lipids of the insect cuticle: origin, composition, and function. Comparative Biochemistry and Physiology B Comparative Biochemistry 89: 595645.CrossRefGoogle Scholar
Lockey, K.H. 1991. Cuticular hydrocarbons of adult Onymacris bicolor (Haag) and Onymacris boschimana (Peringuey) (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology B Comparative Biochemistry 98: 151163.CrossRefGoogle Scholar
Lockey, K.H. 1992. Insect hydrocarbon chemotaxonomy: cuticular hydrocarbons of adult Onymacris unguicularis (Haag) (Tenebrionidae: Coleoptera). Comparative Biochemistry and Physiology B Comparative Biochemistry 102: 451470.CrossRefGoogle Scholar
Lockey, K.H., and Metcalfe, N.B.. 1988. Cuticular hydrocarbons of adult Himatismus species and a comparison with 21 other species of adult tenebrionid beetles using multi-variate analysis. Comparative Biochemistry and Physiology B Comparative Biochemistry 91: 371382.CrossRefGoogle Scholar
Malinski, E., Hebanowska, E., Szafranek, J., and Nawrott, J.. 1986 a. The composition of the hydrocarbons of the larvae of the Khapra beetles, Trogoderma granarium. Comparative Biochemistry and Physiology B Comparative Biochemistry 84: 211215.CrossRefGoogle Scholar
Malinski, E., Kusmierz, J., Szafranek, J., Dubis, E., Poplawski, J., Wrobel, J.R., and Konig, W.A.. 1986 b. Cuticular hydrocarbons of the colorado beetle, Leptinotarsa decemlineata Say. Zeitschrift fuer Naturforschung 41: 567574.CrossRefGoogle Scholar
McCarthy, E.D., Han, J., and Calvin, M.. 1968. Hydrogen atom transfer in mass spectrometric fragmentation patterns of saturated aliphatic hydrocarbons. Analytical Chemistry 40: 14751480.CrossRefGoogle Scholar
McLafferty, F.W., and Turecek, F.. 1993. Interpretation of mass spectra. University Science Books, Mill Vally, CA.Google Scholar
Miwa, T.K. 1963. Identification of peaks in gas–liquid chromatography. Journal of the American Oil Chemists' Society 40: 309313.CrossRefGoogle Scholar
Mody, N.V., Hedin, P.A., Neel, W.W., and Miler, D.H.. 1975. Hydrocarbons from males, females and larvae of pecan weevil, Curculio caryae (Horn). Lipids 10: 117119.CrossRefGoogle ScholarPubMed
Nelson, D.R. 1978. Long-chain methyl-branched hydrocarbons; occurrence, biosynthesis, and function. Advanced Insect Physiology 13: 133.CrossRefGoogle Scholar
Nelson, D.R., Sukkestad, D.R., and Zaylskie, R.G.. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm. Journal of Lipid Research 13: 413421.CrossRefGoogle ScholarPubMed
Nelson, D.R., Fatland, C.L., and Baker, J.E.. 1984. Mass spectral analysis of epicuticular n-alkadienes in three Sitophilus weevils. Insect Biochemistry 14: 435444.CrossRefGoogle Scholar
Noble-Nesbitt, J. 1991. Cuticular permeabilty and its control. pp. 252283in Binnington, K., and Retnakaran, A. (Eds.), Physiology of the insect epidermis. CSIRO Publications, Canberra, Australia.Google Scholar
Page, M., Nelson, L.J., Haverty, M.I., and Blomquist, G.J.. 1990 a. Cuticular hydrocarbons of eight species of North American cone beetles, Conophthorus Hopkins. Journal of Chemical Ecology 16: 11731198.CrossRefGoogle ScholarPubMed
Page, M., Nelson, L.J., Haverty, M.I., and Blomquist, G.J.. 1990 b. Cuticular hydrocarbons as chemotaxonomic characters for bark beetles: Dendroctonus ponderosai, D. jeffreyi, D. brevicomis, and D. frontalis (Coleoptera: Scolytidae). Annals of the Entomological Society of America 83: 892901.CrossRefGoogle Scholar
Pepe, C., Dagaut, J., Scribe, P., and Saliot, A.. 1993. Double bond location in monounsaturated wax esters by gas chromatography/mass spectrometry of their dimethyl bisulfide derivatives. Organic Mass Spectrometry 28: 13651367.CrossRefGoogle Scholar
Peschke, K., and Metzler, M.. 1987. Cuticular hydrocarbons and female sex pheromones of the rove beetle, Aleochara curtula (Goeze) (Coleoptera: Staphylinidae). Insect Biochemistry 17: 167178.CrossRefGoogle Scholar
Pomonis, J.G., and Haak, H.. 1984. Alkanes from surface lipids of sunflower stem weevil, Cylindrocoptorus adspersus (LeConte). Journal of Chemical Ecology 10: 13351347.CrossRefGoogle ScholarPubMed
Pomonis, J.G., Fatland, C.L., Nelson, D.R., and Zaylskie, R.G.. 1978. Insect hydrocarbons: corroboration of structure by synthesis and mass spectrometry of mono- and dimethylalkanes. Journal of Chemical Ecology 4: 2739.CrossRefGoogle Scholar
Pomonis, J.G., Nelson, D.R., and Fatland, C.L.. 1980. Insect hydrocarbons 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between mehtyl groups on fragmentation. Journal of Chemical Ecology 6: 965972.CrossRefGoogle Scholar
Richards, A.G. 1951. The integument of arthropods. Minnesota University Press, Minneapolis, MN.Google Scholar
Vincenti, M., Guglielmetti, G., Cassani, G., and Tonini, C.. 1987. Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Analytical Chemistry 59: 694699.CrossRefGoogle Scholar
Wigglesworth, V.B. 1945. Transpiration through the cuticle of insects. Journal of Experimental Biology 21: 97114.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. Prentice Hall Inc., Englewood Cliffs, NJ.Google Scholar