Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:26:23.134Z Has data issue: false hasContentIssue false

A comparison of three methods to estimate species richness of saproxylic beetles (Coleoptera) in logs and high stumps of Norway spruce

Published online by Cambridge University Press:  02 April 2012

Lars-Ove Wikars*
Affiliation:
Swedish University of Agricultural Sciences, Department of Entomology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
Erik Sahlin
Affiliation:
Swedish University of Agricultural Sciences, Department of Entomology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
Thomas Ranius
Affiliation:
Swedish University of Agricultural Sciences, Department of Entomology, P.O. Box 7044, SE-750 07 Uppsala, Sweden
*
1Corresponding author (e-mail: [email protected]).

Abstract

The amount of dead wood in forests has decreased owing to modern forest practices, and many species associated with this habitat are currently threatened. In Sweden during the last decade, naturally downed logs have been retained and, at clearcuts, high stumps have been artificially created to maintain saproxylic (dead wood dependent) insects. We tested how much these types of dead wood are used by sampling saproxylic beetles in dead wood of Norway spruce (Picea abies (L.) Karst.; Pinaceae) in managed forests in central Sweden. To analyse how surveys should be conducted in these kinds of studies, we compared three methods over an entire growing season. We found that the relationship between the type of dead wood and species richness was statistically significant when we used bark sieving and emergence traps, but not when we used window traps. It is impossible to ascertain whether beetles collected with window traps are related to the type of dead wood on which they are found and, therefore, such traps are less useful in studies of specific substrates. The yield from sieving was highest in spring and autumn, whereas species richness in window trap samples peaked in June and July and that in emergence traps peaked from May to July. With emergence traps we collected, on average, about twice the number of species over the whole season as we did by sieving on a single occasion in the spring. Both emergence trapping and sieving reveal what is present in individual pieces of dead wood, but these methods sample partly different faunas. We found fewer species on artificially created high stumps (on clearcuts); however, these stumps seem to be useful for some red-listed species.

Résumé

La quantité de bois mort dans les forêts a diminué à cause des pratiques forestières modernes et plusieurs espèces associées à cet habitat se trouvent actuellement menacées. En Suède au cours de la dernière décennie, les troncs tombés naturellement sont laissés sur place et de hautes souches sont créées artificiellement lors des coupes à blanc afin de préserver les insectes saproxyliques (dépendants du bois mort). Nous avons évalué dans quelle mesure ces types de bois mort sont utilisés en échantillonnant les coléoptères saproxyliques dans le bois mort de l'épinette de Norvège (Picea abies (L.) Karst.; Pinaceae) dans des forêts aménagées du centre de la Suède. La comparaison de trois méthodes d'inventaire sur une saison entière de croissance nous a permis de déterminer comment procéder dans ce genre d'étude. La relation entre le type de bois et la richesse en espèces est statistiquement significative lorsque nous utilisons les méthodes de tamisage des écorces ou du piège à émergence, mais non celle du piège d'interception vitré. Il n'est pas possible de déterminer si les coléoptères capturés dans les pièges d'interception sont reliés au type de bois mort sur lequel ils sont trouvés; ces pièges sont donc moins utiles pour l'étude de substrats spécifiques. Le rendement du tamisage est maximal au printemps et à l'automne, alors que la richesse en espèces dans les échantillons atteint son sommet en juin et en juillet dans les pièges d'interception et en mai à juillet dans les pièges à émergence. Nous récoltons en moyenne dans les pièges à émergence au cours de toute la saison environ le double des espèces récoltées dans une seule séance de tamisage au printemps. Les pièges à émergence et le tamisage révèlent les espèces présentes dans les pièces individuelles de bois mort, mais ils échantillonnent des faunes partiellement différentes. Il y a moins d'espèces sur les hautes souches créées artificiellement sur les sites de coupe à blanc, qui semblent, néanmoins, importantes pour quelques espèces de la liste rouge.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T., Hämet-Ahti, L., and Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5: 169211.Google Scholar
Baev, P.V., and Penev, L.D. 1995. BIODIV software. Version 5.1 [computer program]. Pensoft, Sofia, Bulgaria.Google Scholar
Berg, Å., Ehnström, B., Gustafsson, L., Hallingbäck, T., Jonsell, M., and Weslien, J. 1994. Threatened plant, animal, and fungus species in Swedish for ests: distribution and habitat associations. Conservation Biology, 8: 718731.CrossRefGoogle Scholar
Colwell, R.K. 2000. EstimateS. Statistical estimation of species richness and shared species from samples. Version 6b 1 a [computer program]. Available from http://viceroy.eeb.uconn.edu/estimates.Google Scholar
Dahlberg, A., and Stokland, J.N. 2004. Vedlevande arters krav på substrat. Rapport No. 7. Skogsstyrelsen, Jönköng, Sweden. [In Swedish.]Google Scholar
Danks, H.V., and Footit, R.G. 1989. Insects of the boreal zone of Canada. The Canadian Entomologist, 121: 625690.CrossRefGoogle Scholar
Esseen, P.A., Ehnström, B., Ericson, L., and Sjöberg, K. 1997. Boreal forests. Ecological Bulletins, 46: 1647.Google Scholar
Fridman, J., and Walheim, M. 2000. Amount, structure and dynamics of dead wood on managed forestland in Sweden. Forest Ecology and Management, 131: 2336.CrossRefGoogle Scholar
Gärdenfors, (Editor). 2000. The 2000 red list of Swedish species. Swedish Threatened Species Unit, Uppsala, Sweden.Google Scholar
Hammond, H.E.J. 1997. Arthropod biodiversity from Populus coarse woody material in north-central Alberta: a review of taxa and collection methods. The Canadian Entomologist, 129: 10091033.Google Scholar
Jonsell, M., and Eriksson, P. 2001. A comparison of the saproxylic beetle fauna on spruce wood and birch high-stumps between the Båtfors forest reserve and its surroundings. Entomologisk Tidskrift, 122: 107122. [In Swedish with English summary.]Google Scholar
Jonsell, M., and Nordlander, G. 1995. Field attraction of Coleoptera to odours of the wooddecaying polypores Fomitopsis pinicola and Fomes fomentarius. Annales Zoologici Fennici, 32: 391402.Google Scholar
Jonsell, M., and Weslien, J. 2003. Felled or standing retained wood — it makes a difference for saproxylic beetles. Forest Ecology and Management, 175: 425435.CrossRefGoogle Scholar
Jonsell, M., Weslien, J., and Ehnström, B. 1998. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodiversity and Conservation, 7: 749764.CrossRefGoogle Scholar
Jonsson, B.G., Kruys, N., and Ranius, T. 2005. Ecology of species living on dead wood — lessons for dead wood management. Silva Fennica, 39(2): 289309.CrossRefGoogle Scholar
Kaila, L. 1993. A new method for collecting quantitative samples of insects associated with decaying wood or wood fungi. Entomologica Fennica, 4: 2123.CrossRefGoogle Scholar
Koch, K. 1989. Die Käfer Mitteleuropas. Ökologie 2. Goecke & Evers, Krefeldt.Google Scholar
Lindhe, L., and Lindelöw, Å. 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. In Conservation through management – cut wood as substrate for saproxylic organisms. Edited by Lindhe, A.. Ph.D. thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.CrossRefGoogle Scholar
Lundberg, S., and Gustafsson, B. 1995. Catalogus Coleopterorum Sueciae. Naturhistoriska Riksmuseet, Stockholm.Google Scholar
Martikainen, P. 2001. Conservation of threatened saproxylic beetles: significance of retained aspen Populus tremula on clearcut areas. Ecological Bulletins, 49: 205218.Google Scholar
Martikainen, P., Siitonen, J., Punttila, P., Kaila, L., and Rauh, J. 2000. Species richness of Coleoptera in mature managed and old-growth forests in southern Finland. Biological Conservation, 94: 199209.CrossRefGoogle Scholar
Økland, B. 1996. A comparison of three methods of trapping saproxylic beetles. European Journal of Entomology, 93: 195209.Google Scholar
Owen, J.A. 1989. An emergence trap for insects breeding in dead wood. British Journal of Entomology and Natural History, 2: 6567.Google Scholar
Palm, T. 1946. Coleoptärfaunan i en jämtländsk lavgranskog. I. Träd- och trädsvampfaunan. Entomologisk Tidskrift, 67: 109139.Google Scholar
Palm, T. 1951. Die Holz- und Rindenkäfer der Nordschwedischen Laubbäume. Meddelanden från Statens Skogsforskningsinstitut, 40(2).Google Scholar
Ranius, T., and Jansson, N. 2002. A comparison of three methods to survey saproxylic beetles associated with old oaks. Biodiversity and Conservation, 11: 17591771.CrossRefGoogle Scholar
Renvall, P. 1995. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia, 35: 151.CrossRefGoogle Scholar
Saalas, U. 1917. Die Fichtenkäfer Finnlands 1. Annales Academiae Scientiarum Fennicae Series A, VIII:1.Google Scholar
Siitonen, J. 1994. Decaying wood and saproxylic Coleoptera in two old spruce forests: a comparison based on two sampling methods. Annales Zoologica Fennici, 31: 8995.Google Scholar
Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins, 49: 1142.Google Scholar
Siitonen, J., and Saaristo, L. 2000. Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biological Conservation, 94: 211220.CrossRefGoogle Scholar
Speight, M.C.D. 1989. Saproxylic invertebrates and their conservation. Council of Europe, Strasbourg.Google Scholar
Storaunet, K.O., and Rolstad, J. 2002. Time since death and fall of Norway spruce logs in old-growth and selectively cut boreal forest. Canadian Journal of Forest Research, 32: 18011812.CrossRefGoogle Scholar
Sverdrup-Thygeson, A., and Ims, R.A. 2002. The effect of forest clear-cutting in Norway on the community of saproxylic beetles on aspen. Biological Conservation, 106: 347357.CrossRefGoogle Scholar
Väisänen, R., Biström, O., and Heliövaara, K. 1993. Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? Biodiversity and Conservation, 2: 95113.CrossRefGoogle Scholar
Weslien, J. 1992. The arthropod complex associated with Ips typographus (L.) (Coleoptera, Scolytidae): species composition, phenology, and impact on bark beetle productivity. Entomologica Fennica, 3: 205213.CrossRefGoogle Scholar
Wikars, L.-O. 2002. Dependence on fire in woodliving insects; an experiment with burned and unburned spruce and birch logs. Journal of Insect Conservation, 6: 112.CrossRefGoogle Scholar