Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:56:44.707Z Has data issue: false hasContentIssue false

Can Wolbachia (Rickettsiaceae) explain female-biased sex ratios in mountain pine beetles (Coleoptera: Curculionidae)?

Published online by Cambridge University Press:  20 January 2015

Leanna E. Lachowsky*
Affiliation:
Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
Robert G. Lalonde
Affiliation:
Department of Biology, University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia, Canada V1V 1V7
Mary L. Reid
Affiliation:
Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4 Environmental Sciences Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
*
1Corresponding author (e-mail: [email protected]).

Abstract

Wolbachia Hertig (Rickettsiales: Rickettsiaceae) is a genus of endosymbionts that are widespread in insects and can have important implications on population dynamics through cytoplasmic incompatibility or sex-ratio distortion. We considered Wolbachia as a possible explanation for female-biased sex ratios often observed in mountain pine beetle populations, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), a major pest species in western Canada whose most recent outbreak and range expansion has killed many millions of mature lodgepole pine, Pinus contorta var. latifolia Engelmann (Pinaceae). We used wsp primers to screen for Wolbachia in 10 mountain pine beetle populations with varying degrees of female bias in southeast British Columbia and southwest Alberta, Canada. We found no evidence of Wolbachia in these populations and suggest that other factors may explain the sex-ratio bias.

Résumé

Wolbachia Hertig (Rickettsiales: Rickettsiaceae) est un genre d’endosymbiontes répandus chez les insectes et pouvant avoir des conséquences importantes sur la dynamique des populations par le biais de l'incompatibilité cytoplasmique ou distorsion du rapport des sexes. Nous avons considéré Wolbachia comme une explication possible des rapports de sexe biaisés vers les femelles souvent observés dans les populations de dendroctones du pin ponderosa, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), une des principales espèces de ravageurs dans l'ouest du Canada dont la plus récente éclosion et l'expansion de la distribution ont tué des millions de pins tordus matures, Pinus contorta var. latifolia Engelmann (Pinaceae). Nous avons utilisé des amorces wsp pour le dépistage de la bactérie Wolbachia dans 10 populations du dendroctone du pin ponderosa avec une gamme de biais du rapport des sexes dans le sud-est de la Colombie-Britannique et le sud-ouest de l'Alberta, Canada. Nous n'avons trouvé aucune preuve de Wolbachia dans ces populations et nous suggérons que d'autres facteurs peuvent expliquer le biais du rapport des sexes.

Type
Behaviour & Ecology – NOTE
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Kevin Floate

References

Arthofer, W., Riegler, M., Avtzis, D.N., and Stauffer, C. 2009. Evidence for low-titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae). Environmental Microbiology, 11: 19231933.Google Scholar
Bracewell, R.R. 2009. An investigation of postzygotic reproductive isolation and phenotypic divergence in the bark beetle Dendroctonus ponderosae. MSc Thesis. Utah State University, Logan, Utah, United States of America. Available from http://digitalcommons.usu.edu/etd/245/ [accessed 7 December 2014].Google Scholar
Bracewell, R.R., Pfrender, M.E., Mock, K.E., and Bentz, B.J. 2010. Cryptic postzygotic isolation in an eruptive species of bark beetle (Dendroctonus ponderosae). Evolution, 65: 961975. doi:10.1111/j.1558-5646.2010.01201.x.CrossRefGoogle Scholar
Charlat, S., Hornett, E.A., Dyson, E.A., Ho, P.P.Y., Loc, N.T., Schilthuizen, M., et al. 2005. Prevalence and penetrance variation of male-killing Wolbachia across Indo-Pacific populations of the butterfly Hypolimnas bolina. Molecular Ecology, 14: 35253530. doi:10.1111/j.1365-294X.2005.02678.x.CrossRefGoogle ScholarPubMed
Engelstadter, J. 2010. The effective size of populations infected with cytoplasmic sex-ratio distorters. Genetics, 186: 309320.CrossRefGoogle ScholarPubMed
Fialho, R.F. and Stevens, L. 2000. Male-killing Wolbachia in a flour beetle. Proceedings of the Royal Society of London Series B: Biological Sciences, 267: 14691473.CrossRefGoogle Scholar
Fischer, K., Beatty, W.L., Jiang, D., Weil, G.J., and Fischer, P.U. 2011. Tissue and stage-specific distribution of Wolbachia in Brugia malayi. Public Library of Science Neglected Tropical Diseases, 5: e1174. doi:10.1371/journal.pntd.0001174.CrossRefGoogle ScholarPubMed
Floate, K.D., Kyei-Poku, G.K., and Coghlin, P.C. 2006. Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Science and Technology, 16: 767788. doi:10.1080/09583150600699606.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google ScholarPubMed
Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., and Werren, J.H. 2008. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiology Letters, 281: 215220.CrossRefGoogle Scholar
Hornett, E.A., Charlat, S., Duplouy, A.M.R., Davies, N., Roderick, G.K., Wedell, N., et al. 2006. Evolution of male-killer suppression in a natural population. Public Library of Science Biology, 4: e283. doi:10.1371/journal.pbio.0040283.Google Scholar
Hurst, G.D.D., Jiggins, F.M., von der Schulenburg, J.H.G., Bertrand, D., West, S.A., Goriacheva, I.I., et al. 1999. Male-killing Wolbachia in two species of insect. Proceedings of the Royal Society of London Series B: Biological Sciences, 266: 735740.CrossRefGoogle Scholar
Janes, J.K., Li, Y., Keeling, C.I., Yuen, M.M.S., Boone, C.K., Cooke, J.E.K., et al. 2014. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian rocky mountains. Molecular Biology and Evolution, 31: 18031815. doi:10.1093/molbev/msu135.CrossRefGoogle ScholarPubMed
Keller, G.P., Windsor, D.M., Saucedo, J.M., and Werren, J.H. 2004. Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae). Molecular Ecology, 13: 24052420.CrossRefGoogle ScholarPubMed
Kondo, N., Ijichi, N., Shimada, M., and Fukatsu, T. 2002. Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Molecular Ecology, 11: 167180.CrossRefGoogle ScholarPubMed
Lachowsky, L.E. and Reid, M.L. 2014. Developmental mortality increases sex-ratio bias of a size-dimorphic bark beetle. Ecological Entomology, 39: 300308.CrossRefGoogle ScholarPubMed
Lanier, G.N. and Oliver, J.H. 1966. “Sex-ratio” condition: unusual mechanisms in bark beetles. Science, 153: 208209.CrossRefGoogle ScholarPubMed
Lanier, G.N. and Wood, D.L. 1968. Controlled mating karyology morphology and sex-ratio in Dendroctonus ponderosae complex. Annals of the Entomological Society of America, 61: 517526.CrossRefGoogle Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. The Canadian Entomologist, 90: 582584.CrossRefGoogle Scholar
Peer, K. and Taborsky, M. 2005. Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution, 59: 317323.Google ScholarPubMed
Reid, R.W. 1958. Internal changes in the female mountain pine beetle, Dendroctonus monticolae Hopk., associated with egg laying and flight. The Canadian Entomologist, 90: 464468.CrossRefGoogle Scholar
Safranyik, L. and Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine. Edited by L. Safranyik and B. Wilson. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada. Pp. 166.Google Scholar
Samarasekera, G.D.N.G., Bartell, N.V., Lindgren, B.S., Cooke, J.E.K., Davis, C.S., James, P.M.A., et al. 2012. Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal. Molecular Ecology, 21: 29312948. doi:10.1111/j.1365-294X.2012.05587.x.CrossRefGoogle Scholar
Simões, P.M., Mialdea, G., Reiss, D., Sagot, M.-F., and Charlat, S. 2011. Wolbachia detection: an assessment of standard PCR protocols. Molecular Ecology Resources, 11: 567572. doi:10.1111/j.1755-0998.2010.02955.x.CrossRefGoogle ScholarPubMed
Stouthamer, R., Hurst, G.D.D., and Breeuwer, J.A.J. 2002. Sex ratio distorters and their detection. In Sex ratios: concepts and research methods. Edited by I.C.W. Hardy. Cambridge University Press, Cambridge, United Kingdom. Pp. 195215.CrossRefGoogle Scholar
Vega, F.E., Benavides, P., Stuart, J.A., and O’Neill, S.L. 2002. Wolbachia infection in the coffee berry borer (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 95: 374378.CrossRefGoogle Scholar
Veneti, Z., Toda, M.J., and Hurst, G.D.D. 2004. Host resistance does not explain variation in incidence of male-killing bacteria in Drosophila bifasciata. BMC Evolutionary Biology, 4: 52. doi:10.1186/1471-2148-4-52.CrossRefGoogle Scholar
Zchori-Fein, E., Borad, C., and Harari, A.R. 2006. Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiological Entomology, 31: 164169. doi:10.1111/j.1365-3032.2006.00504.x.CrossRefGoogle Scholar
Zhou, W., Rousset, F., and O’Neill, S. 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London Series B: Biological Sciences, 265: 509515.CrossRefGoogle ScholarPubMed