Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T20:21:43.036Z Has data issue: false hasContentIssue false

BIOLOGY AND LIFE HISTORY OF EPURAEA OBLIQUUS HATCH (COLEOPTERA: NITIDULIDAE) ON WESTERN GALL RUST

Published online by Cambridge University Press:  31 May 2012

Cameron R. Currie
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
John R. Spence
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
W. Jan A. Volney
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

The life cycle, phenology, and abundance of Epuraea obliquus Hatch was studied near Hinton, Alberta. Most of the life cycle occurs on galls of Endocronartium harknessii (J.P. Moore) Y. Hiratsuka (western gall rust) infecting lodgepole pine (Pinus contorta Dougl. var latifolia Engelm.). Both adults and larvae feed on the spores of the fungus. Individuals of this beetle were found on most galls sampled. Adults overwinter in the soil. They emerge in the spring to seek out and colonize galls. Eggs are laid on the surface of galls, mainly under the periderm, and larvae feed on the fungus, developing through three larval instars. Larvae in the last instar drop from galls to pupate in the soil. Adults leave the soil in late summer and return to feed on inactive galls before overwintering in the soil. The phenology of E. obliquus is closely synchronized with the timing of rust sporulation and the impact of beetle feeding may be an important natural control of western gall rust.

Résumé

Le cycle biologique, la phénologie et l’abondance d’Epuraea obliquus Hatch ont été étudiés près de Hinton en Alberta. Les insectes font la plus grande partie de leur cycle sur des galles formées par la rouille-tumeur, Endocronartium harknessii (J.P. Moore) Y. Hiratsuka, sur des Pins vrillés (Pinus conforta Dougl. var. latifolia Engelm.). Les adultes aussi bien que les larves se nourrissent des spores du champignon. Des nitidules ont été trouvés sur la plupart des galles échantillonnées. Les adultes passent l’hiver dans le sol et en émergent au printemps pour chercher et coloniser les galles. Les oeufs sont pondus à la surface des galles, ordinairement sous le périderme, et les larves se nourrissent du champignon jusqu’à la fin de leur troisième stade. Les larves de dernier stade se laissent tomber des galles et font leur nymphose dans le sol. Les adultes quittent le sol à la fin de l’été et reviennent se nourrir sur les galles inactives avant de retourner au sol pour l’hiver. La phénologie d’E. obliquus est fortement reliée à celle de la sporulation de la rouille et l’impact de l’alimentation du nitidule peut s’avérer un important agent de contrôle naturel de ce champignon.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranyay, J.A., and Stevenson, G.R.. 1964. Mortality caused by armillaria root rot, Peridermium rusts, and other destructive agents in lodgepole pine regeneration. Forestry Chronicle 40: 350361.CrossRefGoogle Scholar
Chang, K.-F., Blenis, P.V., and Hiratsuka, Y.. 1989. Mechanism and pattern of spore release by Endocronartium harknessii. Canadian Journal of Botany 67: 104111.CrossRefGoogle Scholar
Currie, C.R. 1995. Dissemination of the mycoparasite, Scytalidium uredinicola, by Epuraea obliquus (Coleoptera: Nitidulidae). Canadian Journal of Botany 73: 13381344.CrossRefGoogle Scholar
Currie, C.R., Hiratsuka, Y., Spence, J.R., and Volney, W.J.A.. 1995. Biological control of western gall rust: Using a beetle, Epuraea obliquus Hatch (Coleoptera: Nitidulidae), as a vector for a mycoparasite. pp. 193–197 in Proceedings of the 4th IUFRO Rusts of Pines Working Party Conference, October 2–4, 1994. Tsukuba, Japan. 197 pp.Google Scholar
Hatch, M.H. 1962. Beetles of the Pacific Northwest (part 3). University of Washington Press, Seattle, WA. pp. 126148.Google Scholar
Hiratsuka, Y. 1991. A new strategy for the biological control of pine stem rusts. pp. 371–377 in Proceedings of the 3rd IUFRO Rust of Pine Working Party Conference. September 18–22, 1989. Banff, Alberta, Canada. Canadian Forest Service, Northern Forestry Centre, Edmonton, Alta. Information Report NOR–X–317: 408 pp.Google Scholar
Hiratsuka, T., Powell, J.M., and Van Sickle, A.. 1988. Impact of Pine Stem Rusts of Hard Pines in Alberta and the Northwest Territories—10 Year Plot Study. Canadian Forest Service, Northern Forestry Centre, Information Report NOR–X–299: 9 pp.Google Scholar
Kuhlman, E.G. 1981. Parasite interaction with sporulation by Cronartium quercuum f. sp. fusiforme on loblolly and slash pine. Phytopathology 71: 384–350.Google Scholar
Nelson, D.L. 1982. Phalacropsis dispar (Coleoptera: Phalacridae), an element in the natural control of native pine stem rust fungi in the western United States. Great Basin Naturalist 42: 369379.Google Scholar
Parsons, C.T. 1967. North American Nitidulidae (Coleoptera). IV. Epuraea associated with fungi of pine and oak. The Canadian Entomologist 99: 734737.CrossRefGoogle Scholar
Peterson, R.S. 1971. Wave years of infection by western gall rust on pine. Plant Disease Report 55: 163167.Google Scholar
Powell, J.M. 1971 a. The arthropod fauna collected from the comandra blister rust, Cronartium comandrae, on lodgepole pine in Alberta. The Canadian Entomologist 103: 908918.CrossRefGoogle Scholar
Powell, J.M. 1971 b. Additional records of mycodiplosis larvae (Diptera: Cecidomyiidae) feeding on rust fungi. Canadian Plant Disease Survey 51: 139.Google Scholar
Powell, J.M. 1974. The role of natural biological agents in controlling a pine stem rust (Cronartium comandrae). Blue Jay 32: 7579.Google Scholar
Powell, J.M., Wong, H.R., and Melvin, J.C.E.. 1972. Arthropods Collected from Stem Rust Cankers of Hard Pines in Western Canada. Northern Forestry Research Centre, Edmonton, Alta. Information Report NOR–X–42: 19 pp.Google Scholar
Tsuneda, A., and Hiratsuka, Y.. 1979. Mode of parasitism of a mycoparasite, Cladosporium gallicola, on western gall rust, Endocronartium harknessii. Canadian Journal of Plant Pathology 1: 3136.CrossRefGoogle Scholar
Tsuneda, A., and Hiratsuka, Y.. 1980. Parasitization of pine stem rust fungi by Monocillium nordinii. Phytopathology 70: 11011103.CrossRefGoogle Scholar
Tsuneda, A., Hiratsuka, Y., and Maruyama, P.J.. 1980. Hyperparasitism of Scytalidium uredinicola on western gall rust, Endocronartium harknessii. Canadian Journal of Botany 58: 11541159.CrossRefGoogle Scholar
Wong, H.R. 1972. Dioryctria banksiella (Lepidoptera: Pyralidae) in the western gall rust, Endocronartium harknessii (Basidiomycetes: Uredinales). The Canadian Entomologist 104: 251255.CrossRefGoogle Scholar
Ziller, W.G. 1974. The Tree Rusts of Western Canada. Canadian Forest Service, Ottawa, Ontario, Publication 1392: 272 pp.Google Scholar