Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T08:46:04.510Z Has data issue: false hasContentIssue false

ASSESSING NATURAL SELECTION IN WHITE PINE WEEVILS (PISSODES STROBI PECK) (COLEOPTERA: CURCULIONIDAE) FOR OVERCOMING RESISTANCE IN TREES: AN EVOLUTIONARY MODEL

Published online by Cambridge University Press:  31 May 2012

Hugh J. Barclay
Affiliation:
Pacific Forestry Centre, 506 West Burnside Rd., Victoria, British Columbia, Canada V8Z 1M5, andDepartment of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2

Abstract

An evolutionary model was constructed for the white pine weevil (Pissodes strobi Peck). This weevil attacks Sitka spruce [Picea sitchensis (Bongard) Carriere], and Sitka spruce trees have two forms, one being susceptible to the insect attacks and the other being resistant to attack. There is a fear that insects may develop tolerance to the resistant trees. The strategy of interplanting susceptible and resistant trees to minimize the likelihood of the insects developing tolerance mechanisms to circumvent the resistance is examined. It is found that if only one gene locus is involved, the development of tolerance occurs more quickly than if resistance is governed by two independent loci. The rate of evolution of tolerance to tree resistance is retarded by increased adult survivorship, the degree of recessiveness of the gene, preferential attack of susceptible trees, redistribution of intolerant insects from resistant to susceptible trees, and the immigration of wild-type insects.

Résumé

Un modèle évolutif a été élaboré pour étudier la tolérance chez le Charançon du pin blanc (Pissodes strobi Peck). Ce charançon attaque l’épinette de Sitka (Picea sitchensis (Bongard) Carrière), arbre qui compte deux formes, l’une sensible et l’autre résistante aux attaques des insectes. Il est à craindre que les insectes ne développent une tolérance aux arbres résistants. La stratégie qui consiste à planter des arbres sensibles et des arbres résistants en alternance pour minimiser la probabilité que l’insecte ne génère des mécanismes de tolérance pour vaincre la résistance des arbres est examinée. Il semble que, lorque la résistance ne dépend que d’un locus, la tolérance apparaît plus rapidement que si la résistance est contrôlée par deux locus indépendants. La vitesse d’évolution de la tolérance à la résistance des arbres est retardée par une augmentation de la survie des adultes, par le degré de récessivité du gène, par les attaques préférentielles d’arbres sensibles, par tranfert des insectes intolérants d’arbres résistants à des arbres sensibles et par immigration d’insectes de type sauvage.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I. 1994. The white pine weevil in British Columbia: biology and damage. pp. 722in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management, Proceedings of a meeting held January 19–21, 1994, in Richmond, B.C., Canada. Canadian Forest Service FRDA Report 226.Google Scholar
Alfaro, R.I. 1995. An induced defense reaction in white spruce to attack by the white pine weevil, Pissodes strobi. Canadian Journal of Forest Research 25: 17251730.CrossRefGoogle Scholar
Alfaro, R.I. 1996. Feeding and oviposition preferences of white pine weevil (Coleoptera: Curculionidae) on resistant and susceptible sitka spruce clones in laboratory bioassays. Environmental Entomology 25: 10121019.CrossRefGoogle Scholar
Alfaro, R.I., and Borden, J.H.. 1982. Host selection by the white pine weevil, Pissodes strobi Peck: feeding bioassays using host and nonhost plants. Canadian Journal of Forest Research 12: 6470.CrossRefGoogle Scholar
Alfaro, R.I., Borden, J.H.Fraser, R.G., and Yanchuk, A.. 1995. The white-pine weevil in British Columbia: basis for an integrated pest management system. Forestry Chronicle 71: 6673.CrossRefGoogle Scholar
Alstad, D.N., and Andow, D.A.. 1995. Managing the evolution of insect resistance to transgenic plants. Science (Washington, D.C.) 268: 18941896.CrossRefGoogle ScholarPubMed
Barclay, H.J. 1992. Combining methods of insect pest control: partitioning mortality and predicting complementarity. Researches on Population Ecology 34: 91107CrossRefGoogle Scholar
Barclay, H.J. 1996. Modelling selection for resistance to methods of insect pest control in combination. Researches on Population Ecology 38: 7585.CrossRefGoogle Scholar
Berryman, A.A. 1982. Population dynamics of bark beetles. pp. 264314in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology. University of Texas Press, Austin, TX.Google Scholar
Brattsten, L.B. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals. pp. 199270in Rosenthal, G.A., and Janzen, D.H. (Eds.), Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
Cates, R.G. 1975. The interface between slugs and wild ginger: some evolutionary aspects. Ecology 56: 391400.CrossRefGoogle Scholar
Comins, H. 1977 The development of insecticide resistance in the presence of migration. Journal of Theoretical Biology 64: 177197.CrossRefGoogle ScholarPubMed
Comins, H. 1984. The mathematical evaluation of options for managing pesticide resistance. pp. 454469in Conway, G.R. (Ed.), Pest and Pathogen Control: Strategic, Tactical and Policy Models. John Wiley & Sons Inc., New York.Google Scholar
Crow, J.F., and Kimura, M.. 1970. An Introduction to Population Genetics Theory. Harper & Row, New York.Google Scholar
den Boer, P.J. 1968. Spreading the risk and stabilization of animal numbers. Acta Biotheoretica 18: 165194.CrossRefGoogle ScholarPubMed
Denholm, I., and Rowland, M.W.. 1992. Tactics for managing pesticide resistance in arthropods: theory and practice. Annual Review of Entomology 37: 91112.CrossRefGoogle ScholarPubMed
Ehrlich, P.R., and Raven, P.H.. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586608.CrossRefGoogle Scholar
Feeny, P.P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565581.CrossRefGoogle Scholar
Feeny, P.P., Paauwe, K.L., and Demong, N.J.. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 63: 832841.CrossRefGoogle Scholar
Georghiou, G.P. 1986. The magnitude of the resistance problem. pp. 314365in The National Research Council (Ed.), Pesticide Resistance: Strategies and Tactics for Management. National Academy Press, Washington, DC.Google Scholar
Gould, F. 1986. Simulation models for predicting durability of insect-resistant germ plasm: a deterministic diploid, two-locus model. Environmental Entomology 15: 110.CrossRefGoogle Scholar
Gould, F., Kennedy, G.G., and Johnson, M.T.. 1991. Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomologia Experimentalis et Applicata 58: 114.CrossRefGoogle Scholar
Groth, J.V. 1976. Multilines and “superraces”—a simple model. Phytopathology 66: 937939.CrossRefGoogle Scholar
Groth, J.V., and Person, C.O.. 1977. Genetic interdependence of host and parasite in epidemics. Annals of the New York Academy of Sciences 287: 97106.Google Scholar
Hulme, M.A. 1995. Resistance by translocated Sitka spruce to damage by Pissodes strobi (Coleoptera: Curculionidae) related to tree phenology. Journal of Economic Entomology 88: 15251530.CrossRefGoogle Scholar
Kiss, G., and Yanchuk, A.D.. 1991. Preliminary evaluation of genetic variation of weevil resistance in interior spruce in British Columbia. Canadian Journal of Forest Research 21: 230234.CrossRefGoogle Scholar
Lunderstadt, J. 1988. Resistance of plants at the population level to attack by phytophagous insects. pp. 131137in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects, Search for Pattern. Springer-Verlag, New York.CrossRefGoogle Scholar
Macauley, B.J., and Fox, L.R.. 1980. Variation in total phenols and condensed tannins in Eucalyptus: leaf phenology and insect grazing. Australian Journal of Ecology 5: 3135.CrossRefGoogle Scholar
Marshall, D.R. 1989. Modelling the effects of multiline varieties on the population genetics of plant pathogens. pp. 284317in Leonard, K.J., and Fry, W.E. (Eds.), Plant Disease Epidemiology. Vol. 2: Genetics Resistance and Management. McGraw-Hill, New York.Google Scholar
May, R.M. 1978. Host–parasitoid systems in patchy environments: a phenomenological model. Journal of Animal Ecology 47: 833843.CrossRefGoogle Scholar
May, R.M., and Dobson, A.P.. 1986. Population dynamics and the rate of evolution of pesticide resistance. pp. 170193in National Research Council (Ed.), Pesticide Resistance: Strategies and Tactics for Management. National Academy Press, Washington, DC.Google Scholar
McMullen, L.H., Thomson, A.J., and Quenet, R.V.. 1987. Sitka spruce weevil (Pissodes strobi) population dynamics and control: a simulation model based on field relationships. Canadian Forest Service Pacific Forest Research Centre Information Report BC–X–288.Google Scholar
Namkoong, G. 1994. Breeding strategies of resistance. pp. 218221in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management, Proceedings of a meeting held January 19–21, 1994, in Richmond, B.C., Canada. Canadian Forest Service FRDA Report 226.Google Scholar
Phillips, J.R., Graves, J.B., and Luttrell, R.G.. 1989. Insecticide resistance management: relationship to integrated pest management. Pesticide Science 27: 459464.CrossRefGoogle Scholar
Price, P.W. 1984. Insect Ecology. John Wiley & Sons Inc., New York.Google Scholar
Roush, R.T., and McKenzie, J.A.. 1987. Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32: 361380.CrossRefGoogle ScholarPubMed
Sahota, T.S., Manville, J.F., and White, E.. 1994 a. Interaction between Sitka spruce weevil and its host, Picea sitchensis (Bong) Carr.: a new mechanism for resistance. The Canadian Entomologist 126: 10671074.CrossRefGoogle Scholar
Sahota, T.S., Manville, J.F.White, E., and Ibaraki, A.. 1994 b. Towards an understanding of Sitka spruce resistance against Pissodes strobi. pp. 110116in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management, Proceedings of a meeting held January 19–21, 1994, in Richmond, B.C., Canada. Canadian Forest Service FRDA Report 226.Google Scholar
Shiga, M. 1991. Future prospect of eradication of fruit flies. pp. 126136in Kawasaki, K. (Ed.), Proceedings of the International Symposium on the Biology and Control of Fruit Flies, Ginowan, Okinawa, Japan, 2–4 September 1991.Google Scholar
Southwood, T.R.E. 1973. The insect/plant relationship—an evolutionary perspective. pp. 330in van Emden, H.F. (Ed.), Insect/Plant Relationships. Symposia of the Royal Entomological Society of London 6.Google Scholar
Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology 39: 4779.CrossRefGoogle Scholar
Tomlin, E.S., and Borden, J.H.. 1994. Development of a multicomponent resistance index for Sitka spruce resistant to the white pine weevil. pp. 218221in Alfaro, R.I., Kiss, G., and Fraser, R.G. (Eds.), The White Pine Weevil: Biology, Damage and Management, Proceedings of a meeting held January 19–21, 1994, in Richmond, B.C., Canada. Canadian Forest Service FRDA Report 226.Google Scholar