Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T11:32:46.825Z Has data issue: false hasContentIssue false

ARTHROPOD PREDATORS IN CABBAGE (CRUCIFERAE) AND THEIR POTENTIAL AS NATURALLY OCCURRING BIOLOGICAL CONTROL AGENTS FOR PIERIS RAPAE (LEPIDOPTERA: PIERIDAE)

Published online by Cambridge University Press:  31 May 2012

Mark A. Schmaedick*
Affiliation:
Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, United States 14456
Anthony M. Shelton
Affiliation:
Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, United States 14456
*
1 Author to whom all corresponding should be sent at the following address: Land Grant Program, American Samoa Community College, Box 5319, Pago Pago, American Samoa, United States 96799.

Abstract

We used three sampling methods to identify the arthropod predators most abundant and active in fields of cabbage, Brassica oleracea L. var. capitata, and determined those most likely to be important predators of the imported cabbageworm, Pieris rapae L., by testing the predators’ abilities to forage on cabbage plants and to feed on Pieris rapae in small arenas in the laboratory. Abundance and activity in the field were monitored with pitfall traps, sticky traps applied directly to leaves, and plant samples. Four criteria were used to assess the species’ potential value as a predator of Pieris rapae in cabbage: relatively high overall abundance in trap catches and plant samples, occurrence on plant foliage in the field, a high propensity to feed on Pieris rapae eggs and first instars, and the ability to search for larval Pieris rapae on cabbage plants. Four species, the wolf spider Pardosa milvina (Hentz) (Araneae: Lycosidae), the harvestman Phalangium opilio L. (Opiliones: Phalangiidae), and the lady beetles Coleomegilla maculata lengi Timberlake and Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), demonstrated these attributes, although all four species appeared unable to search for prey on some parts of the cabbage plants, owing to unsure footing on the plants’ slippery cuticular wax. Linyphiids (Araneae) and syrphids (Diptera), the most abundant taxa in the plant samples, may prove better at thoroughly searching cabbage plants, but remain to be tested in future laboratory trials. Our results show that only a small portion of the predatory arthropod species that occur in cabbage fields is likely to prey on Pieris rapae on the plants, although important questions remain about the roles of some taxa. Future efforts to enhance biological control of Pieris rapae by naturally occurring predators can now focus on further elucidating and finding ways to enhance the roles of those predators that are effective.

Résumé

Nous avons identifié les prédateurs arthropodes les plus abondants et actifs sur le choux, Brassica oleracea L. var. capitata, en utilisant trois méthodes de recensement en champ. Ensuite nous avons identifié les espèces de ces arthropodes les plus susceptibles d’être des prédateurs efficaces de la piéride du chou, Pieris rapae L., en utilisant un examen en laboratoire de leurs aptitudes à rechercher des proies sur plantes entières et à consommer des piérides du chou (oeufs ou larves). Nous avons recensé l’abondance et l’activité de ces prédateurs potentiels au moyen de pièges à fosses, de pièges gluants déposés sur feuilles et d’échantillonages de plantes. Nous avons utilisé quatre critères pour évaluer le potentiel de chaque espèce étudiée : son abondance relative dans les pièges et sur plantes, l’efficacité de sa recherche de proies sur plantes, et sa consommation d’oeufs et de larves de Pieris rapae. Quatre espèces se sont avérées intéressantes : la lycose Pardosa milvina (Hentz) (Araneae : Lycosidae), l’opilion Phalangium opilio L. (Opiliones : Phalangiidae), et les coccinelles Coleomegilla maculata lengi Timberlake et Hippodamia variegata (Goeze) (Coleoptera : Coccinellidae). Cependant, chacune de ces espèces est incapable de consommer des piérides sur certaines parties de la plante en raison de la présence de cires épicuticulaires qui gênent leurs déplacements. Il est possible que les linyphiidés (Araneae) et les syrphides (Diptera), les prédateurs les plus abondants dans nos échantillons de plantes entières, ne sont pas gênés par ces cires. Néanmoins, leurs aptitudes à rechercher des proies sur plantes entières reste à être évaluée. Nos résultats montrent que seule une petite proportion des prédateurs présents aux champs ont le potentiel d’être des prédateurs efficaces de Pieris rapae. Le rôle de ces prédateurs pourrait être accentué dans un programme de lutte biologique contre Pieris rapae basé sur l’utilisation de prédateurs naturellement présents dans les champs de choux.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, J.W. 1974. A study of arthropod predation of Pieris rapae L. using serological and exclusion techniques. Journal of Applied Ecology 11: 419–25CrossRefGoogle Scholar
Cleveland, T.C. 1987. Predation by tarnished plant bugs (Heteroptera: Miridae) of Heliothis (Lepidoptera: Noctuidae) eggs and larvae. Environmental Entomology 16: 3740CrossRefGoogle Scholar
Comstock, J.H. 1940. The spider book. Rev. ed., Gertsch, W.J. (Ed.). New York: Doubleday, Doran, and Co.Google Scholar
Courtney, S.P. 1986. The ecology of pierid butterflies: dynamics and interactions. Advances in Ecological Research 15: 51131CrossRefGoogle Scholar
Culliney, T.W., Pimentel, D., Namuco, O.S., Capwell, B.A. 1986. New observations of predation by plant bugs (Hemiptera: Miridae). The Canadian Entomologist 118: 729–30CrossRefGoogle Scholar
Dempster, J.P. 1967. The control of Pieris rapae with DDT. I. The natural mortality of the young stages of Pieris. Journal of Applied Ecology 4: 485500CrossRefGoogle Scholar
Dempster, J.P. 1984. The natural enemies of butterflies. pp. 97104in Vane-Wright, R.I., Ackery, P.R. (Eds.), The biology of butterflies. New York: Academic PressGoogle Scholar
Dennis, P., Sotherton, N.W. 1994. Behavioural aspects of staphylinid beetles that limit their aphid feeding potential in cereal crops. Pedobiologia 38: 222–37CrossRefGoogle Scholar
Ehrlich, P.R. 1984. The structure and dynamics of butterfly populations. pp. 2540in Vane-Wright, R.I., Ackery, P.R. (Eds.), The biology of butterflies. New York: Academic PressGoogle Scholar
Eigenbrode, S.D., Castagnola, T., Roux, M-B, Steljes, L. 1996. Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomologia Experimentalis et Applicata 81: 335–43CrossRefGoogle Scholar
Fagan, W.F., Hakim, A.L., Ariawan, H., Yuliyantiningsih, S. 1996. Interactions between biological control efforts and insecticide applications in tropical rice agroecosystems: the potential role of intraguild predation. Biological Control 13: 121–6CrossRefGoogle Scholar
Gilbert, L.E., Singer, M.C. 1975. Butterfly ecology. Annual Review of Ecology and Systematics 6: 365–97CrossRefGoogle Scholar
Gould, W.P., Jeanne, R.L. 1984. Polistes wasps (Hymenoptera: Vespidae) as control agents for lepidopterous cabbage pests. Environmental Entomology 13: 150–6CrossRefGoogle Scholar
Grevstad, F.S., Klepetka, B.W. 1992. The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia 92: 399404CrossRefGoogle ScholarPubMed
Harcourt, D.G. 1961. Spatial pattern of the imported cabbageworm, Pieris rapae (L.) (Lepidoptera: Pieridae), on cultivated cruciferae. The Canadian Entomologist 93: 945–52CrossRefGoogle Scholar
Hasui, H. 1977. On the seasonal variability of survivorship curves and life tables of Pieris rapae crucivora Boiduval (Lepidoptera: Pieridae). [In Japanese.] Japanese Journal of Ecology 27: 7582Google Scholar
Jones, R.E. 1977. Search behaviour: a study of three caterpillar species. Behaviour 60: 237–59CrossRefGoogle Scholar
Jones, R.E. 1981. The cabbage butterfly, Pieris rapae (L.): 'a just sense of how not to fly'. pp. 217–28 in Kitching, R.L., Jones, R.E. (Eds.), The ecology of pests: some Australian case histories. Melbourne: CSIROGoogle Scholar
Jones, R.E., Ives, P.M. 1979. The adaptiveness of searching and host selection behaviour in Pieris rapae (L.). Australian Journal of Ecology 4: 7586CrossRefGoogle Scholar
Jones, R.E., Nealis, V.G., Ives, P.M., Scheermeyer, E. 1987. Seasonal and spatial variation in juvenile survival of the cabbage butterfly Pieris rapae: evidence for patchy density-dependence. Journal of Animal Ecology 56: 723–37CrossRefGoogle Scholar
Kirk, V.M. 1975. Biology of Stenolophus (= Agonoderus) comma, a ground beetle of cropland. Annals of the Entomological Society of America 68: 135–8CrossRefGoogle Scholar
Lokkers, C., Jones, R.E. 1999. The cabbage white, Pieris rapae (Pieridae). pp. 153–72 in Kitching, R.L., Scheermeyer, E., Jones, R.E., Pierce, N.E. (Eds.), Biology of Australian butterflies. Collingwood, Victoria, Australia: CSIROGoogle Scholar
Losey, J.E., Denno, R.E. 1998 a. Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79: 2143–52Google Scholar
Jones, R.E. 1998 b. The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecological Entomology 23: 5361Google Scholar
Nyffeler, M., Sterling, W.L., Dean, D.A. 1994. How spiders make a living. Environmental Entomology 23: 1357–67CrossRefGoogle Scholar
Oatman, E.R., Platner, G.R. 1969. An ecological study of insect populations on cabbage in southern California. Hilgardia 40: 140CrossRefGoogle Scholar
Parker, F.D. 1970. Seasonal mortality and survival of Pieris rapae (Lepidoptera: Pieridae) in Missouri and the effect of introducing an egg parasite, Trichogramma evanescens. Annals of the Entomological Society of America 63: 985–94CrossRefGoogle Scholar
Pausch, R.D. 1979. Observations on the biology of the seed corn beetles, Stenolophus comma and Stenolophus lecontei. Annals of the Entomological Society of America 72: 24–8CrossRefGoogle Scholar
Polis, G.A., Myers, C.A. 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology and Systematics 20: 297330CrossRefGoogle Scholar
Richards, O.W. 1940. The biology of the small white butterfly (Pieris rapae), with special reference to the factors controlling its abundance. Journal of Animal Ecology 9: 243–88CrossRefGoogle Scholar
Rosenheim, J.A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43: 421–47CrossRefGoogle ScholarPubMed
Rosenheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J., Jaffee, B.A. 1995. Intraguild predation among biological-control agents: theory and evidence. Biological Control 5: 303–35CrossRefGoogle Scholar
Schmaedick, M.A., Shelton, A.M. 1999. Experimental evaluation of arthropod predation on Pieris rapae (Lepidoptera: Pieridae) eggs and larvae in cabbage. Environmental Entomology 28: 439–44CrossRefGoogle Scholar
Settle, W.H., Ariawan, H., Astuti, E.T., Cahyana, W., Hakim, A.L., Hindayana, D., Lestari, A.S., Pajarningsih, Sartanto 1996. Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77: 1975–88CrossRefGoogle Scholar
Shah, M.A. 1982. The influence of plant surfaces on the searching behaviour of coccinellid larvae. Entomologia Experimentalis et Applicata 31: 377–80CrossRefGoogle Scholar
Shelton, A.M., Andaloro, J.T., Hoy, C.W. 1983 a. Survey of ground-dwelling predaceous and parasitic arthropods in cabbage fields in upstate New York. Environmental Entomology 12: 1026–30CrossRefGoogle Scholar
Shelton, A.M., Sears, M.K., Wyman, J.A., Quick, T.C. 1983 b. Comparison of action thresholds for lepidopterous larvae on fresh-market cabbage. Journal of Economic Entomology 76: 196–9CrossRefGoogle Scholar
Snyder, W.E., Wise, D.H. 1999. Predator interference and the establishment of generalist predator populations for biocontrol. Biological Control 15: 283–92CrossRefGoogle Scholar
Sutherland, D.W.S. 1966. Biological investigations of Trichoplusia ni (Hübner) and other Lepidoptera damaging cruciferous crops on Long Island, New York. Cornell University Agricultural Experiment Station Memoir 399: 5799Google Scholar
Thornhill, W.A. 1983. The distribution and probable importance of linyphiid spiders living on the soil surface of sugar-beet fields. Bulletin of the British Arachnological Society 6: 127–36Google Scholar
US Department of Agriculture. 1958. Soil survey, Ontario and Yates counties, New York. Soil survey, series 1949, No. 5. Soil Conservation ServiceGoogle Scholar
Vittum, M.T., Gibbs, G.H., Barnard, J. 1983. Minimum and maximum temperatures and record periods of warm and cold, wet and dry weather at Geneva, NY. New York State Agricultural Experiment Station Geneva Special Report 47Google Scholar
Webb, S.E., Shelton, A.M. 1988. Laboratory rearing of the imported cabbageworm. New York's Food and Life Sciences Bulletin 122Google Scholar
Weires, R.W., Chiang, H.C. 1973. Integrated control prospects of major cabbage insect pests in Minnesota—based on the faunistic, host varietal, and trophic relationships. University of Minnesota Agricultural Experiment Station Technical Bulletin 291Google Scholar
Wheeler, A.G. 1976. Lygus bugs as facultative predators. pp. 2835in Scott, D.R., O'Keefe, L.E. (Eds.), Lygus Bug—Host Plant Interactions: Proceedings of a workshop held 21 August 1976 in conjunction with the XV International Congress of Entomology, Washington, DC. Moscow: University Press of IdahoGoogle Scholar
Whitman, D.W., Nordlund, D.A. 1994. Plant chemicals and the location of herbivorous arthropods by their natural enemies. pp. 133–59 in Ananthakrishnan, T.N. (Ed.), Functional dynamics of phytophagous insects. Lebanon, New Hampshire: Science PublishersGoogle Scholar
Wyman, J.A.. Libby, J.L., Chapman, R.K. 1976. The role of seed-corn beetles in predation of cabbage maggot immature stages. Environmental Entomology 5: 259–63CrossRefGoogle Scholar
Yamamoto, M. 1981. Comparison of population dynamics of two pierid butterflies, Pieris rapae crucivora and P. napi nesis, living in the same area and feeding on the same plant in Sapporo, northern Japan. Journal of the Faculty of Science Hokkaido University Series VI Zoology 22: 202–49Google Scholar