Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:40:46.243Z Has data issue: false hasContentIssue false

THE APPLICABILITY OF X-RAY ENERGY-DISPERSIVE SPECTROSCOPY TO THE IDENTIFICATION OF POPULATIONS OF RED TURNIP BEETLE, ENTOMOSCELIS AMERICANA (COLEOPTERA: CHRYSOMELIDAE)12

Published online by Cambridge University Press:  31 May 2012

W. J. Turnock
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9
G. H. Gerber
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9
M. Bickis
Affiliation:
Research Station, Agriculture Canada, Winnipeg, Manitoba R3T 2M9
R. B. Bennett
Affiliation:
Bennett Analytical X-Ray Ltd., Vancouver, British Columbia V7M 2T5

Abstract

The relative concentration of elements in adults of the red turnip beetle, Entomoscelis americana Brown, as determined by X-ray energy-dispersive spectroscopy (XES), was used with discriminant analysis to identify source populations of beetles from different fields in the same district. Classification of dispersed beetles from the same district, using discriminant functions, suggests that XES is a promising technique for dispersal studies. However, multivariate analysis of variance and canonical analysis of XES results of groups of beetles given different foods over varying times in the laboratory indicate that highly significant changes occur in the chemoprint. Methods of minimizing the effect of such changes are suggested for future studies of dispersal.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. W. 1958. An introduction to multivariate statistical analysis. Wiley, New York and London.Google Scholar
Bennett, R. B. 1972. The use of indium and other trace elements as internal markers in mark-recapture studies by means of thermal neutron activation analysis. D.I.C. Thesis, Imperial College, Univ. London.Google Scholar
Berry, W. L., Stimmann, M. W., and Wolf, W. W.. 1972. Marking of native phytophagous insects with rubidium: Rb a proposed technique. Ann. ent. Soc. Am. 65: 236238.CrossRefGoogle Scholar
Calaprice, J. R. 1971. X-ray spectrometric and multivariate analysis of sockeye salmon (Oncorhynchus nerka) from different geographic regions. J. Fish. Res. Bd Can. 28: 369377.CrossRefGoogle Scholar
Crossley, D. A. Jr. and Reichle, D. E.. 1969. Analysis of transient behavior of radioisotopes in insect food chains. Bioscience 19: 341343.Google Scholar
D'Auria, J. M. and Bennett, R.. 1975. X-rays and trace elements. Chemistry 48: 1719.Google Scholar
Dixon, W. J. 1975. BMDP — Biomedical computer programs. Univ. of California Press, Berkeley.Google Scholar
Dzubay, G. 1977. X-ray fluorescence analysis of environmental samples. Ann Arbor Science Publishers Incorporated, Ann Arbor, Mich.Google Scholar
Ehrlich, W. A., Pratt, L. E., and Leclaire, F. P.. 1959. Reconnaissance soil survey of Grandview sheet area. Manitoba Soil Surv. Rep. 9.Google Scholar
Guss, P. L. and Branson, T. F.. 1972. The use of 75 SE in feeding studies with the corn leaf aphid (Hemiptera (Homoptera) Aphididae). Ann. ent. Soc. Am. 65: 303306.Google Scholar
Guthrie, J. E. and Burzynski, A. Z.. 1972. Accumulation of 137 CS by Aedes aegypti larvae and the effect of potassium concentration. Can. Ent. 104: 411416.Google Scholar
Lasceve, G., Buscarlet, L. A., and Bossy, A.. 1972. Analyse par radioactivation de carpocapses marques avec de l'iridium 191. Int. J. appl. Radiat. Isotopes 23: 265270.Google Scholar
Mahalanobis, P. C. 1936. On the generalized distance in statistics. Proc. natn. Inst. Sci. India 2: 4955.Google Scholar
Middleton, S. G., Giles, F. E., and Grau, J. G.. 1973. Preparation of insect specimens for analysis by means of atomic-absorption spectrophotometry. Ann. ent. Soc. Am. 66: 226227.Google Scholar
O'Brien, R. D. and Wolfe, L. S.. 1964. Radiation, radioactivity and insects. Academic Press, New York and London.Google Scholar
Odynsky, W., Lindsay, J. D., Reeder, S. W., and Wynnyk, A.. 1961. Soil survey of the Beaverlodge and Blueberry Mountain sheets. Univ. Alberta Bull. No. SS-3. Res. Coun. Alberta Rep. 81.Google Scholar
Reeder, S. W. and Odynsky, W.. 1965. Soil survey of the Cherry Point and Hines Creek area. Univ. Alberta Bull. No. SS-6. Res. Coun. Alberta Rep. 85.Google Scholar
Shepard, M. and Waddill, V. H.. 1976. Rubidium as a marker for Mexican bean beetles, Epilachna varivestis (Coleoptera: Coccinellidae). Can. Ent. 108: 337339.CrossRefGoogle Scholar
Southwood, T. R. E. 1966. Ecological methods with particular reference to the study of insect populations. Methuen, London.Google Scholar
Stimmann, M. W., Wolf, W. W., and Berry, W. L.. 1973. Cabbage loopers: biological effects of ribidium in the larval diet. J. econ. Ent. 66: 324326.Google Scholar
Umbarger, C. J. and Malanify, J. J.. 1972. Insect tagging — natural versus laboratory-grown screwworm flies. Int. J. appl. Radiat. Isotopes 23: 381382.Google Scholar
Wilks, S. S. 1962. Mathematical statistics. Wiley, New York and London.Google Scholar
Woldseth, R. 1973. X-ray energy dispersive spectrometry. Kevex Corporation, Burlingame, Calif.Google Scholar