Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T19:26:26.305Z Has data issue: false hasContentIssue false

An Early Eocene bee (Hymenoptera: Halictidae) from Quilchena, British Columbia

Published online by Cambridge University Press:  02 April 2012

Michael S. Engel*
Affiliation:
Division of Entomology, Natural History Museum and Biodiversity Research Center, and Department of Ecology and Evolutionary Biology, Snow Hall, 1460 Jayhawk Boulevard, University of Kansas, Lawrence, Kansas, United States 66045-7523
S. Bruce Archibald
Affiliation:
Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, 26 Oxford Street, Cambridge, Massachusetts, United States 02138
*
1Corresponding author.

Abstract

A fossil halictine bee from Early Eocene, Okanagan Highlands deposits of Quilchena, British Columbia, Canada, is described and figured. Halictus? savenyeisp.nov. is distinguished from other Tertiary halictines as well as modern bees. The specimen is the second oldest body fossil of a bee yet discovered and the first fossil bee from Canada. The antiquity of Halictidae and of bees in general is briefly commented upon.

Résumé

On trouvera ici la description illustrée d'une abeille halictinée fossile de l'Éocène inférieur provenant des sédiments des Hautes Terres d'Okanagan à Quilchena, Colombie-Britannique, Canada. Halictus? savenyeisp.nov. se distingue des autres Halictinae du Tertiaire et des abeilles modernes. Il s'agit là du deuxième plus vieux fossile du corps d'une abeille jamais trouvé et le premier fossile d'une abeille découvert au Canada. L'ancienneté des Halictidae et des abeilles en général fait l'objet d'un bref commentaire.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, S.B., Mathewes, R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology 78: 1441–62CrossRefGoogle Scholar
Camargo, J.M.F., Grimaldi, D.A., Pedro, S.R.M. 2000. The extinct fauna of stingless bees (Hymenoptera: Apidae: Meliponini) in Dominican amber: two new species and redescription of the male of Proplebeia dominicana (Wille and Chandler). American Museum Novitates 3293: 1242.0.CO;2>CrossRefGoogle Scholar
Cockerell, T.D.A. 1906. Fossil Hymenoptera from Florissant, Colorado. Bulletin of the Museum of Comparative Zoology 50: 3358Google Scholar
Cockerell, T.D.A. 1911. Fossil insects from Florissant, Colorado. Bulletin of the American Museum of Natural History 30: 7182Google Scholar
Cockfield, W.E. 1948. Geology and mineral deposits of Nicola Map-Area, British Columbia. Memoir of the Geological Survey of Canada 249: v + 1164Google Scholar
Crane, P.R., Lidgard, S. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. pp 377407in Taylor, P.D., Larwood, G.P. (Eds), Major evolutionary radiations. Oxford, United Kingdom: Clarendon PressGoogle Scholar
Danforth, B.N. 2002. Evolution of sociality in a primitively eusocial lineage of bees. Proceedings of the National Academy of Sciences of the United States of America 99: 286–90CrossRefGoogle Scholar
Elliott, D.K., Nations, J.D. 1998. Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos 5: 243–53CrossRefGoogle Scholar
Engel, M.S. 1996. New augochlorine bees (Hymenoptera: Halictidae) in Dominican amber, with a brief review of fossil Halictidae. Journal of the Kansas Entomological Society 69(Suppl): 334–45Google Scholar
Engel, M.S. 1999. Megachile glaesaria, the first megachilid bee fossil from amber (Hymenoptera: Megachilidae). American Museum Novitates 3276: 113Google Scholar
Engel, M.S. 2000. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates 3296: 1112.0.CO;2>CrossRefGoogle Scholar
Engel, M.S. 2001 a. Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity. Proceedings of the National Academy of Sciences of the United States of America 98: 1661–4CrossRefGoogle ScholarPubMed
Engel, M.S. 2001 b. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History 259: 11922.0.CO;2>CrossRefGoogle Scholar
Engel, M.S. 2001 c. The first large carpenter bee from the Tertiary of North America, with a consideration of the geological history of Xylocopinae (Hymenoptera: Apidae). Transactions of the American Entomological Society (Philadelphia) 127: 245–54Google Scholar
Engel, M.S. 2002. Halictine bees from the Eocene–Oligocene boundary of Florissant, Colorado (Hymenoptera: Halictidae). Neues Jahrbuch fuer Geologie und Palaeontologie, Abhandlungen 225: 251–73CrossRefGoogle Scholar
Engel, M.S. 2003. The geological history and phylogeny of the bees (Hymenoptera: Apoidea). In Anderson, J.M. (Ed), Gondwana alive. Pretoria, South Africa: Gondwana Alive Society. In pressGoogle Scholar
Evanoff, E., Mcintosh, W.C., Murphey, P.C. 2001. Stratigraphy and 30Ar/39Ar geochronology of the Florissant, Formation, Colorado. pp 116in Proceedings of the Denver Museum of Nature and Science, Series 4, No. 1Google Scholar
Ewing, T.E. 1981. Regional stratigraphy and structural setting of the Kamloops Group, south-central British Columbia. Canadian Journal of Earth Sciences 18: 1464–77CrossRefGoogle Scholar
Genise, J.F., Sciutto, J.C., Laza, J.H., González, M.G., Bellosi, E.S. 2002. Fossil bee nests, coleopteran pupal chambers and tuffaceous paleosols from the Late Cretaceous Laguna Palacios Formation, Central Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 177: 215–35CrossRefGoogle Scholar
Guthrie, G.H. 1995. A high resolution paleoecological analysis of an Eocene fossil locality from Quilchena, British Columbia. MSc thesis, Simon Fraser University, Burnaby, British ColumbiaGoogle Scholar
Lidgard, S., Crane, P.R. 1988. Quantitative analyses of the early angiosperm radiation. Nature (London) 331: 344–6CrossRefGoogle Scholar
Michener, C.D. 2000. The bees of the world. Baltimore, Maryland: Johns Hopkins University PressGoogle Scholar
Michener, C.D., Grimaldi, D.A. 1988. A Trigona from Late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates 2917: 110Google Scholar
Read, P.B. 2000. Geology and industrial minerals of the Tertiary basins, south-central British Columbia. British Columbia Geological Survey GeoFile 2000–3Google Scholar
Zeuner, F.E., Manning, F.J. 1976. A monograph on fossil bees (Hymenoptera: Apoidea). Bulletin of the British Museum (Natural History), Geology 27: 149268Google Scholar