Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:37:40.777Z Has data issue: false hasContentIssue false

ALLOZYME VARIATION IN HALICTUS RUBICUNDUS (CHRIST): A PRIMITIVELY SOCIAL HALICTINE BEE (HYMENOPTERA: HALICTIDAE)

Published online by Cambridge University Press:  31 May 2012

Laurence Packer
Affiliation:
Department of Biology, York University, 4700 Keele St., Downsview, Ontario, Canada M3J 1P3
Robin E. Owen
Affiliation:
Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Abstract

Halictus rubicundus (Christ) is a primitively eusocial halictine bee. Studies of electrophoretic variation at 48 loci for 37 enzymes with an average of 38 bees per locus provided an expected heterozygosity of 0.038 ± 0.018 for a population from Vancouver, B.C. This value is well within the range found for other primitively eusocial bees and wasps. Comparisons of allozyme mobilities made among samples from France, Alberta, and Vancouver indicated that there are some genetic differences, with the French sample appearing particularly distinct. The loci Diaph, G3pdh-1, and 6Pgd-1 had variants with both alleles at high frequency within the Vancouver population. These loci could provide good estimates of the average relatedness between nest mates.

Résumé

Halictus rubicundus (Christ) est une abeille halictine primitivement eusociale. L’étude de la variation électrophorétique observée à 48 loci et pour 37 enzymes avec en moyenne 38 abeilles par locus a révélé un niveau d’hétérozygosité de 0,038 ± 0,018 dans une population de Vancouver. Cette valeur est bien en déça des limites observées chez d’autres abeilles et guêpes eusociales. La comparaison de la mobilité isozymatique entre des échantillons de France, d’Alberta et de Vancouver indique qu’il existe des différences génétiques, l’échantillon de France se distinquant de façon particulière. Les loci Diaph, G3pdh-1, et 6Pgd-1 avaient des variantes, les deux allèles montrant des fréquences élevées dans la population de Vancouver. Ces loci pourraient permettre d’estimer la parenté entre cohabitants d’un même nid.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F.J., Powell, J.R., Tracey, M.L., Mourao, C.A., and Perez-Salas, S.. 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113139.CrossRefGoogle ScholarPubMed
Berkelhamer, R.C. 1983. Intraspecific genetic variation and haplodiploidy, eusociality, and polygny in the Hymenoptera.Evolution 37: 540545.CrossRefGoogle Scholar
Brewer, G.W. 1970. An Introduction to Isozyme Techniques. Academic Press, New York.Google Scholar
Brussard, P.F., Ehrlich, P.R., Murphy, D.D., Wilcox, B.A., and Wright, J.. 1985. Genetic distances and the taxonomy of checkerspot butterflies (Nymphalidae: Nymphalinae). J. Kans. ent. Soc. 58: 403412.Google Scholar
Clayton, J.W., and Tretiak, D.N.. 1972. Amine-Citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Bd Can. 29: 11691172.CrossRefGoogle Scholar
Cockerham, C.C. 1973. Analyses of gene frequencies. Genetics 74: 679700.CrossRefGoogle ScholarPubMed
Gooding, R.H., and Rolseth, B.M.. 1979. Genetics of Glossina morsitans morsitans (Diptera: Glossinidae). IV. Electrophoretic banding patterns of octanol dehydrogenase and arginine phosphokinase. Can. Ent. 111: 13071310.CrossRefGoogle Scholar
Graur, D. 1985. Gene diversity in Hymenoptera. Evolution 39: 190199.CrossRefGoogle ScholarPubMed
Harris, H., and Hopkinson, D.A.. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Elsevier, New York.Google Scholar
Knerer, G. 1980. Biologie und Sozialverhalten von Bienenarten der Gattung Halictus Latreille (Hymenoptera, Halictidae). Zool. Jb. Syst. 107: 511536.Google Scholar
Kukuk, P.F., and May, B.. 1985. A re-examination of genetic variability in Dialictus zephyrus (Hymenoptera: Halictidae). Evolution 39: 226228.CrossRefGoogle ScholarPubMed
Lester, L.J., and Selander, R.K.. 1979. Population genetics of haplodiploid insects. Genetics 92: 13271345.CrossRefGoogle ScholarPubMed
Levene, H. 1949. On a matching problem arising in genetics. Ann. Math. Stat. 20: 9194.CrossRefGoogle Scholar
May, B., Marsden, J.E., and Schenck, C.G.. 1988. Electrophoretic Procedures, Recipes and Nomenclature used in the Cornell Laboratory for Ecological and Evolutionary Genetics. 57 pp.Google Scholar
Metcalf, R.A., Marlin, J.C., and Whitt, G.S.. 1984. Genetics of speciation within the Polistes fuscatus species complex. J. Hered. 75: 117120.CrossRefGoogle Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.CrossRefGoogle ScholarPubMed
Obrecht, E., and Scholl, A.. 1981. Enzymelektrophoretische Untersuchungen zur analyse der verwandtschafts-grade swischen Hummel — und Schmarotzerhummelarten (Apidae, Bombini). Apidologie 12: 257268.CrossRefGoogle Scholar
Owen, R.E. 1985. Difficulties with the interpretation of patterns of genetic variation in the eusocial Hymenoptera. Evolution 39: 201205.CrossRefGoogle ScholarPubMed
Packer, L. 1986. The social organisation of Halictus ligatus in southern Ontario. Can. J. Zool. 64: 23172324.CrossRefGoogle Scholar
Packer, L., and Knerer, G.. 1986. The biology of a subtropical population of Halictus ligatus Say (Hymenoptera: Halictidae). I. Phenology and social organisation. Behav. Ecol. Sociobiol. 18: 363375.CrossRefGoogle Scholar
Pamilo, P., and Crozier, R.H.. 1982. Measuring genetic relatedness in natural populations: methodology. Theor. Pop. Biol. 21: 171193.CrossRefGoogle Scholar
Pamilo, P., Varvio-Aho, S.-L., and Pekkarinen, A.. 1978. Low enzyme gene variability in Hymenoptera as a consequence of haplodiploidy. Hereditas 88: 9399.CrossRefGoogle Scholar
Pekkarinen, A., Varvio-Aho, S.-L., and Pamilo, P.. 1979. Evolutionary relationships in northern European Bombus and Psithyrus species (Hymenoptera, Apidae) studied on the basis of allozymes. Ann. Ent. Fenn. 45: 7780.Google Scholar
Pesenko, Y.A. 1985. A subgeneric classification of bees of the genus Halictus Latreille sensu stricto (Hymenoptera, Halictidae). Ent. Rev. 63: 120.Google Scholar
Richardson, B.J., Baverstock, P.R., and Adams, M.. 1986. Allozyme Electrophoresis. Academic Press, Sydney.Google Scholar
Ridgway, G.L., Sherburne, S.U., and Lewis, R.D.. 1970. Polymorphism in the esterases of atlantic herring. Trans. Am. Fish. Soc. 99: 147151.2.0.CO;2>CrossRefGoogle Scholar
Sakagami, S.F., and Munakata, M.. 1972. Distribution and bionomics of a transpalaearctic eusocial halictine bee, Lasioglossum (Evylaeus) calceatum, in northern Japan, with reference to its solitary life cycle at high altitude. J. Fac. Sci. Hokkaido Univ. Ser. 6 : Zool. 18: 411439.Google Scholar
Selander, R.K., Smith, M.H., Yang, S.Y., Johnson, W.E., and Gentry, J.B.. 1971. Biochemical polymorphism and systematics in the genus Peromyscus I. Variation in the old-field mouse (Peromyscus polionotus). Univ. Texas Publ. Genet. VI: 5090.Google Scholar
Shaw, C.R., and Prassad, R.. 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Gen. 4: 291320.CrossRefGoogle ScholarPubMed
Siciliano, M.J., and Shaw, C.R.. 1976. Separation and visualization of enzymes on gels. pp. 185209in Smith, I. (Ed.), Chromatographic and Electrophoretic Techniques, Vol. 2, Zone Electrophoresis. Heinemann, London.Google Scholar
Snyder, T.P. 1974. Lack of allozymic variability in three bee species. Evolution 28: 687689.CrossRefGoogle ScholarPubMed
Tabachnick, W.J., and Howard, D.J.. 1982. Genetic control of hexokinase variation in insects. Biochem. gen. 20: 4757.CrossRefGoogle ScholarPubMed
Templeton, A.R. 1980. Modes of speciation and inferences based upon genetic distance. Evolution 34: 719729.CrossRefGoogle Scholar
Vallejos, C.E. 1983. Enzyme activity staining. In Tanksley, S.D., and Orton, T.J. (Eds.), Isozymes and Plant Genetics and Breeding. Elsevier, Amsterdam.Google Scholar
Varvio-Aho, S.-L., Pamilo, P., and Pekkarinen, A.. 1984. Evolutionary genetics of social wasps (Hymenoptera, Vespidae, (Vespula). Insectes Soc. 31: 375386.CrossRefGoogle Scholar
Webb, E.C. 1984. Enzyme Nomenclature: Recommendations of the Nomenclature Committee of the Internatitonal Union of Biochemistry on the Nomenclature and Classification of Enzyme-catalysed Reactions. Academic Press, Orlando.Google Scholar
Yanega, D. 1988. Social plasticity and early-diapausing females in a primitively social bee. Proc. Nat. Acad. Sci. 85: 43744377.CrossRefGoogle Scholar