Published online by Cambridge University Press: 08 February 2005
Shelah has recently proved that an uncountable free group cannot be the automorphism group of a countable structure. In fact, he proved a more general result: an uncountable free group cannot be a Polish group. A natural question is: can an uncountable $\aleph _{1}$-free group be a Polish group? A negative answer is given here; indeed, it is proved that an $\aleph _{1}$-free group cannot be a homomorphic image of a Polish group. In fact, a stronger result is proved, involving a non-commutative analogue of the notion of separable group.