Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T08:33:14.954Z Has data issue: false hasContentIssue false

SMOOTH LIPSCHITZ RETRACTIONS OF STARLIKE BODIES ONTO THEIR BOUNDARIES IN INFINITE-DIMENSIONAL BANACH SPACES

Published online by Cambridge University Press:  25 July 2001

DANIEL AZAGRA
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain Equipe d'Analyse, 4, place Jussieu, 75005 Paris, France; [email protected]
MANUEL CEPEDELLO BOISO
Affiliation:
Departamento de Análisis Matemático, Universidad de Sevilla, Sevilla, Spain; [email protected]
Get access

Abstract

Let X be an infinite-dimensional Banach space, and let A be a Cp Lipschitz bounded starlike body (for instance the unit ball of a smooth norm). We prove that:

(1) the boundary ∂A is Cp Lipschitz contractible;

(2) there is a Cp Lipschitz retraction from A onto ∂A;

(3) there is a Cp Lipschitz map T : AA with no approximate fixed points.

Type
NOTES AND PAPERS
Copyright
© The London Mathematical Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)