Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T23:10:51.662Z Has data issue: false hasContentIssue false

PRIME NON-COMMUTATIVE JB*-ALGEBRAS

Published online by Cambridge University Press:  21 December 2000

KAIDI EL AMIN
Affiliation:
Departamento de Algebra y Análisis Matemático, Universidad de Almería, Facultad de Ciencias Experimentales, 04120-Almería, Spain
ANTONIO MORALES CAMPOY
Affiliation:
Departamento de Algebra y Análisis Matemático, Universidad de Almería, Facultad de Ciencias Experimentales, 04120-Almería, Spain
ANGEL RODRIGUEZ PALACIOS
Affiliation:
Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias, 18071-Granada, Spain
Get access

Abstract

We prove that if A is a prime non-commutative JB*-algebra which is neither quadratic nor commutative, then there exist a prime C*-algebra B and a real number λ with ½ < λ [les ] 1 such that A = B as involutive Banach spaces, and the product of A is related to that of B (denoted by ∘, say) by means of the equality xy = λxy + (1 − λ)yx.

Type
NOTES AND PAPERS
Copyright
© The London Mathematical Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)