Published online by Cambridge University Press: 23 October 2001
We prove the existence of a power series having radius of convergence 0, whose partial sums have universal approximation properties on any compact set with connected complement that is contained in a finite union of circles centred at 0 and having rational radii, but do not have such properties on any compact set with nonempty interior. This relates to a theorem of A. I. Seleznev.