Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T15:45:02.567Z Has data issue: false hasContentIssue false

When projective covers and injective hulls are isomorphic

Published online by Cambridge University Press:  17 April 2009

Ann K. Boyle
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that rings in which the projective cover and injective hull of cyclic modules are isomorphic are equivalent to uniserial rings. Further, it is shown that rings for which the top and bottom of finitely generated modules are isomorphic also are equivalent to uniserial rings.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Asano, K., “Über verallgemeinerte Abelsche Gruppe mit hyperkomplexem Operatorenring und ihre Anwendungen”, Japan. J. Math. 15 (1939), 231253.Google Scholar
[2]Asano, Keizo, “Über Hauptidealringe mit Kettensatz”, Osaka Math. J. 1 (1949), 5261.Google Scholar
[3]Bass, Hyman, “Finitistic dimension and a homological generalization of semi-primary rings”, Trans. Amer. Math. Soc. 95 (1960), 466488.Google Scholar
[4]Eckmann, B. and Schopf, A., “Über injektive Moduln”, Arch. Math. 4 (1953), 7578.CrossRefGoogle Scholar
[5]Faith, Carl, “Rings with ascending condition on annihilators”, Nagoya Math. J. 27 (1966), 179191.CrossRefGoogle Scholar
[6]Faith, Carl, “On Köthe rings”, Math. Ann. 164 (1966), 207212.Google Scholar
[7]Fuller, K., “On indecomposable injectives over artinian rings”, (to appear).Google Scholar
[8]Ikeda, Masatoshi, “A characterization of quasi-Frobenius rings”, Osaka Math J. 4 (1952), 203209.Google Scholar
[9]Köthe, Gottfried, “Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring”, Math. Z. 39 (1935), 3144.Google Scholar
[10]Osofsky, B.L., “A generalization of quasi-Frobenius rings”, J. Algebra 4 (1966), 373387.Google Scholar