Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T02:27:40.841Z Has data issue: false hasContentIssue false

$U$-NUMBERS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS

Published online by Cambridge University Press:  29 July 2019

GÜLCAN KEKEÇ*
Affiliation:
Department of Mathematics, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey email [email protected]

Abstract

In the field $\mathbb{K}$ of formal power series over a finite field $K$, we consider some lacunary power series with algebraic coefficients in a finite extension of $K(x)$. We show that the values of these series at nonzero algebraic arguments in $\mathbb{K}$ are $U$-numbers.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braune, E., ‘Über arithmetische Eigenschaften von Lückenreihen mit algebraischen Koeffizienten und algebraischem Argument’, Monatsh. Math. 84 (1977), 111.Google Scholar
Bundschuh, P., ‘Transzendenzmasse in Körpern formaler Laurentreihen’, J. reine angew. Math. 299–300 (1978), 411432.Google Scholar
Gürses, H., ‘Über verallgemeinerte Lückenreihen’, İstanb. Üniv. Fen Fak. Mat. Derg. 59 (2000), 5988.Google Scholar
Mahler, K., ‘Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II’, J. reine angew. Math. 166 (1932), 118150.Google Scholar
Mahler, K., ‘Arithmetic properties of lacunary power series with integral coefficients’, J. Aust. Math. Soc. 5 (1965), 5664.Google Scholar
Oryan, M. H., ‘Über die Unterklassen U m der Mahlerschen Klasseneinteilung der transzendenten formalen Laurentreihen’, İstanb. Üniv. Fen Fak. Mecm. Ser. A 45 (1980), 4363.Google Scholar
Zeren, B. M., ‘Über einige komplexe und p-adische Lückenreihen mit Werten aus den Mahlerschen Unterklassen U m’, İstanb. Üniv. Fen Fak. Mecm. Ser. A 45 (1980), 89130.Google Scholar