Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T22:59:40.446Z Has data issue: false hasContentIssue false

Two-generator groups II

Published online by Cambridge University Press:  17 April 2009

J.L. Brenner
Affiliation:
10 Phillips Road, Palo Alto, California 94303, USA
James Wiegold
Affiliation:
Department of Mathematics, University College, Cardiff CFI IXL, Wales.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let n be an odd integer greater than 9. It is proved that the alternating group An has spread 3 in the sense that for any non-trivial elements x1, x2, x3 of An, there is an element y in An such that 〈xi, y〉 = An for i = 1, 2, 3.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Бинбер, Г.Я. [Binder, G.Ya.], “О вдожении элементов энанопеременной группы четной степени в двухэлементный” [The inclusion of the elements of the alternating group of even degree in a two-element basis], Izv. Vysš. Učebn. Zaved. Mat. 1973, No. 8 (135), 1518.Google Scholar
[2]Brenner, J.L. and Wiegold, James, “Two-generator groups, I”, Michigan Math. J. 22 (1975), 5364.CrossRefGoogle Scholar
[3]Coxeter, H.S.M. and Moser, W.O.J., Generators and relations for discrete groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 14. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1957).CrossRefGoogle Scholar
[4]Langer, Ulrich, “Erzeugende endlicher linearer Gruppen” (Dissertation, Universität Hamburg, Hamburg, 1977).Google Scholar
[5]Neumann, Peter M., “Transitive permutation groups of prime degree, II: a problem of Noboru Ito”, Bull. London Math. Soc. 4 (1972), 337339.CrossRefGoogle Scholar
[6]Sinkov, Abraham, “Necessary and sufficient conditions for generating certain simple groups by two operators of periods two and three”, Amer. J. Math. 59 (1937), 6776.CrossRefGoogle Scholar
[7]Williamson, Alan, “On primitive permutation groups containing a cycle”, Math. Z. 130 (1973), 159162.Google Scholar