We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
[1]Bose, R. C., Shrikhande, S. S. and Parker, E. T., ‘Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s conjecture’, Canad. J. Math.12 (1960), 189–203.CrossRefGoogle Scholar
[2]
[2]Bryant, D., Egan, J., Maenhaut, B. and Wanless, I. M., ‘Indivisible plexes in latin squares’, Des. Codes Cryptogr.52 (2009), 93–105.CrossRefGoogle Scholar
[3]
[3]Colbourn, C. J. and Dinitz, J. H. (eds), Handbook of Combinatorial Designs, 2nd edn (Chapman & Hall/CRC, Boca Raton, FL, 2007).Google Scholar
[4]
[4]Dougherty, S. T., ‘Planes, nets and codes’, Math. J. Okayama Univ.38 (1996), 123–143.Google Scholar
[5]
[5]Egan, J., ‘Bachelor latin squares with large indivisible plexes’. J. Combin. Des., to appear.Google Scholar
[6]
[6]Egan, J. and Wanless, I. M., ‘Latin squares with restricted transversals’, Preprint.Google Scholar
[7]
[7]Egan, J. and Wanless, I. M., ‘Latin squares with no small odd plexes’, J. Combin. Des.16 (2008), 477–492.CrossRefGoogle Scholar
[8]
[8]Egan, J. and Wanless, I. M., ‘Indivisible partitions of latin squares’, J. Statist. Plann. Inference141 (2011), 402–417.CrossRefGoogle Scholar
[9]
[9]Evans, A. B., ‘Latin squares without orthogonal mates’, Des. Codes Cryptogr.40 (2006), 121–130.CrossRefGoogle Scholar
[10]
[10]Finney, D. J., ‘Orthogonal partitions of the 6×6 latin squares’, Ann. Eugenics.13 (1946), 184–196.CrossRefGoogle Scholar
[11]
[11]Ryser, H. J., ‘Neuere Probleme der Kombinatorik’, Vortrage über Kombinatorik Oberwolfach (1967), 69–91.Google Scholar
[12]
[12]Wanless, I. M., ‘A generalisation of transversals for latin squares’, Electron. J. Combin.9 (2002), R12.CrossRefGoogle Scholar
[13]
[13]Wanless, I. M. and Webb, B. S., ‘The existence of latin squares without orthogonal mates’, Des. Codes Cryptogr.40 (2006), 131–135.CrossRefGoogle Scholar