Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T08:30:39.239Z Has data issue: false hasContentIssue false

TRANSVERSALS, INDIVISIBLE PLEXES AND PARTITIONS OF LATIN SQUARES

Published online by Cambridge University Press:  16 June 2011

JUDITH EGAN*
Affiliation:
School of Mathematical Sciences, Monash University, Victoria 3800, Australia (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Bose, R. C., Shrikhande, S. S. and Parker, E. T., ‘Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s conjecture’, Canad. J. Math. 12 (1960), 189203.CrossRefGoogle Scholar
[2]Bryant, D., Egan, J., Maenhaut, B. and Wanless, I. M., ‘Indivisible plexes in latin squares’, Des. Codes Cryptogr. 52 (2009), 93105.CrossRefGoogle Scholar
[3]Colbourn, C. J. and Dinitz, J. H. (eds), Handbook of Combinatorial Designs, 2nd edn (Chapman & Hall/CRC, Boca Raton, FL, 2007).Google Scholar
[4]Dougherty, S. T., ‘Planes, nets and codes’, Math. J. Okayama Univ. 38 (1996), 123143.Google Scholar
[5]Egan, J., ‘Bachelor latin squares with large indivisible plexes’. J. Combin. Des., to appear.Google Scholar
[6]Egan, J. and Wanless, I. M., ‘Latin squares with restricted transversals’, Preprint.Google Scholar
[7]Egan, J. and Wanless, I. M., ‘Latin squares with no small odd plexes’, J. Combin. Des. 16 (2008), 477492.CrossRefGoogle Scholar
[8]Egan, J. and Wanless, I. M., ‘Indivisible partitions of latin squares’, J. Statist. Plann. Inference 141 (2011), 402417.CrossRefGoogle Scholar
[9]Evans, A. B., ‘Latin squares without orthogonal mates’, Des. Codes Cryptogr. 40 (2006), 121130.CrossRefGoogle Scholar
[10]Finney, D. J., ‘Orthogonal partitions of the 6×6 latin squares’, Ann. Eugenics. 13 (1946), 184196.CrossRefGoogle Scholar
[11]Ryser, H. J., ‘Neuere Probleme der Kombinatorik’, Vortrage über Kombinatorik Oberwolfach (1967), 6991.Google Scholar
[12]Wanless, I. M., ‘A generalisation of transversals for latin squares’, Electron. J. Combin. 9 (2002), R12.CrossRefGoogle Scholar
[13]Wanless, I. M. and Webb, B. S., ‘The existence of latin squares without orthogonal mates’, Des. Codes Cryptogr. 40 (2006), 131135.CrossRefGoogle Scholar