Article contents
THE TOTAL DISTANCE FOR TOTALLY POSITIVE ALGEBRAIC INTEGERS
Published online by Cambridge University Press: 09 September 2014
Abstract
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}P(x)$ be a polynomial of degree $d$ with zeros $\alpha _1, \ldots, \alpha _d$. Stulov and Yang [‘An elementary inequality about the Mahler measure’, Involve6(4) (2013), 393–397] defined the total distance of$P$ as ${\rm td}(P)=\sum _{i=1}^{d} | | \alpha _i| -1|$. In this paper, using the method of explicit auxiliary functions, we study the spectrum of the total distance for totally positive algebraic integers and find its five smallest points. Moreover, for totally positive algebraic integers, we establish inequalities comparing the total distance with two standard measures and also the trace. We give numerical examples to show that our bounds are quite good. The polynomials involved in the auxiliary functions are found by a recursive algorithm.
Keywords
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 90 , Issue 3 , December 2014 , pp. 391 - 403
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 1
- Cited by