Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T19:19:08.996Z Has data issue: false hasContentIssue false

Time averages for continuous functions on distal flows

Published online by Cambridge University Press:  17 April 2009

Carmen Núñez
Affiliation:
Departamento de Matemática Aplicada a la Ingeniería, Universidad de Valladolid, Paseo del Cauce s/n, E-47011 Valladolid, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the time averages of continuous functions along the trajectories of the distal projective flow induced by an ergodic family of Schrödinger equations. General conditions guaranteeing that the set of nonconvergence points is a residual subset are found. Applications to the study of the ergodic structure of the projective flow are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Arnold, L., Cong, Nguyen Dinh and Oseledets, V. I., ‘Jordan normal form for linear cocycles’ (Report Nr. 360 Institut für Dynamische Systeme, Universität Bremen, 1997).Google Scholar
[2]Choquet, G., Lectures on Analysis, Vol. I (Benjamin, Massachusetts, 1969).Google Scholar
[3]Ellis, R., Lectures on Topological Dynamics (Benjamin, Massachusetts, 1969).Google Scholar
[4]Furstenberg, H., ‘Strict ergodicity and transformations of the torus’, Amer. J. Math. 85 (1961), 573601.CrossRefGoogle Scholar
[5]Johnson, R., ‘Minimal functions with unbounded integral’, Israel J. Math. 31 (1978), 133141.CrossRefGoogle Scholar
[6]Johnson, R. and Moser, J., ‘The rotation number for almost periodic differential equations’, Commun. Math. Phys. 84 (1982), 403438.CrossRefGoogle Scholar
[7]Novo, S. and Obaya, R., ‘An ergodic classification of bidimensional linear systems’, J. Dynamics Differential Equations 8 (1996), 373406.CrossRefGoogle Scholar
[8]Núñez, C. and Obaya, R., ‘Nontangential limit of the Weyl m-functions for the ergodic Schrödinger equation’, J. Dynamics Differential Equations 10 (1998), 209257.CrossRefGoogle Scholar
[9]Obaya R., R. and Paramio, M., ‘Directional differentiability of the rotation number for the almost periodic Schrödinger equation’, Duke Math. J. 66 (1992), 521552.CrossRefGoogle Scholar
[10]Sacker, R. J. and Sell, G. R., Lifting properties in skew-products flows with applications to differential equations, Mem. Amer. Math. Soc. 190 (Amer. Math. Soc, Providence, R.I., 1977).Google Scholar