Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:54:08.034Z Has data issue: false hasContentIssue false

THEOREM OF WARD ON SYMMETRIES OF ELLIPTIC NETS

Published online by Cambridge University Press:  04 October 2024

L. DEWAGHE*
Affiliation:
Institut Polytechnique UniLaSalle, SYMADE, Campus Amiens, 14 quai de la somme, 80082 Amiens, France
Rights & Permissions [Opens in a new window]

Abstract

We present a new version of a generalisation to elliptic nets of a theorem of Ward [‘Memoir on elliptic divisibility sequences’, Amer. J. Math. 70 (1948), 31–74] on symmetry of elliptic divisibility sequences. Our results cover all that is known today.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1. Introduction

This paper concerns a generalisation of a theorem of Ward [Reference Ward7] on symmetry of elliptic sequences to the case of nondegenerate elliptic nets of rank $d \ (d \in {\mathbb N})$ associated to an elliptic curve E and points on E. In our opinion, it is the most comprehensive form that we can hope to achieve.

Symmetries of such elliptic nets written explicitly in a form similar to Ward’s theorem [Reference Ward7] are only known for the cases $d=1$ [Reference Stange, Lauter, Avanzi, Keliher and Sica6] and $d=2$ [Reference Stange4, Reference Stange, Lauter, Avanzi, Keliher and Sica6]. To get the right shape for all d, an essential point of our demonstration consists of showing that appropriate quotients of two elliptic nets follow a geometric progression. This new approach allows us to obtain a simple proof of the generalisation of the symmetry theorem in Ward’s form. In this way, we unify all the results known to date: for $d=1$ , Ward [Reference Ward7, Theorem 8.1], Stange [Reference Stange4, Theorem 10.2.2] and [Reference Stange, Lauter, Avanzi, Keliher and Sica6, Theorem 4], and the author [Reference Dewaghe2, Theorem 1]; for $d=2$ , [Reference Stange4, Lemma 10.2.5] and [Reference Stange, Lauter, Avanzi, Keliher and Sica6, Theorem 5]; and for $d>2$ , [Reference Stange4, Theorem 10.2.3] and Akbary et al. [Reference Akbary, Bleaney and Yazdani1, Theorems 1.12 and 1.13].

Let E be an elliptic curve over a field ${\mathbb K}$ (see [Reference Silverman3]). To simplify, we assume that the characteristic is different from $2$ and $3$ . Then

$$ \begin{align*}E({\mathbb K})=\{[X:Y:Z] \in {\mathbb P}^2({\mathbb K}) \mid {\cal F}(X,Y,Z)=0\} = \{(x,y) \in {\mathbb K}^2 \mid {\cal F}(x,y,1)=0\} \cup \{0_E\},\end{align*} $$

with ${\cal F}(X,Y,Z)=Y^2Z-(X^3+ aXZ^2+bZ^3)$ , $a,b \in {\mathbb K}$ such that $4a^3+27b^2 \neq 0$ and $0_E$ the unique point at infinity of the curve. The group structure of $E({\mathbb K})$ is defined by the chord and tangent method with the neutral element $0_E$ .

We introduce division polynomials $\psi _m(x,y), m \in {\mathbb Z}$ , of an elliptic curve E over the field ${\mathbb K}$ with an affine equation $y^2=x^3+ax+b$ (see [Reference Washington8]) by

$$ \begin{align*} \psi_0(x,y)=0,& \quad \psi_1(x,y)=1, \quad \psi_2(x,y)=2y \quad \psi_3(x,y)=3x^4+6 a x^2 + 12 b x -a^2,\\ &\psi_4(x,y)=4y(x^6+5 a x^4 + 20 b x^3 - 5 a^2 x^2 - 4 a b x -8 b^2-a^3), \end{align*} $$

and for n a natural integer, $\psi _{-n}=-\psi _n$ . Then, for all $(m,n)$ in ${\mathbb Z}^2$ ,

(1.1) $$ \begin{align} \psi_{m+n}\psi_{m-n}=\psi_{m+1}\psi_{m-1}\psi_n^2-\psi_{n+1}\psi_{n-1}\psi_m^2. \end{align} $$

This equality can be used for the product $\psi _{\imath } \psi _{\jmath }$ when the integers $\imath $ and $\jmath $ have the same parity. Any solution over an arbitrary integral domain of (1.1) is called an elliptic sequence. Also,

$$ \begin{align*}\psi_{2n+1}=\psi_{n+2}\psi_n^3-\psi_{n+1}^3\psi_{n-1} \quad\text{and}\quad \psi_{2n}\psi_{2}=\psi_n(\psi_{n+2}\psi_{n-1}^2-\psi_{n-2}\psi_{n+1}^2)\end{align*} $$

for n in ${\mathbb Z}$ . Note also Stephen Nelson’s form (see [Reference Stange4, page 22]): for all $(\alpha ,\beta ,\gamma ,\delta ) \in {\mathbb Z}^4$ ,

(1.2) $$ \begin{align} \psi_{\alpha+\beta}\psi_{\alpha-\beta}\psi_{\gamma+\delta}\psi_{\gamma-\delta}+ \psi_{\alpha+\gamma}\psi_{\alpha-\gamma}\psi_{\delta+\beta}\psi_{\delta-\beta}+ \psi_{\alpha+\delta}\psi_{\alpha-\delta}\psi_{\beta+\gamma}\psi_{\beta-\gamma}=0. \end{align} $$

Division polynomials have partial periodicity, called symmetry.

Theorem 1.1 [Reference Dewaghe2]

Let $\mathbb {F}_q$ be a finite field, let $E/\mathbb {F}_q$ be an elliptic curve and let $P \in E(\bar {\mathbb {F}}_q)$ be a point of exact order $u\geq 2$ . Then there exists $\omega \in \bar {\mathbb {F}}_q$ , depending on P, such that the following hold.

  1. (1) If $u \geq 3$ , then for all k and v in $\mathbb {Z}$ :

    • if $u=2m$ , we have $\psi _{ku+v}(P)=(-\omega ^m)^{k^2}\omega ^{kv}\psi _v(P);$

    • if $u=2m+1$ , we have $\psi _{ku+v}(P)=(-\omega ^{2m+1})^{k^2}(\omega ^2)^{kv}\psi _v(P).$

  2. (2) If $u=2$ , then for all $k \in \mathbb {Z}$ ,

    $$ \begin{align*}\psi_{4k+1}(P)=(-1)^k\psi_3^{k(2k+1)}, \quad \psi_{4k+3}(P)=(-1)^k\psi_3^{(k+1)(2k+1)}.\end{align*} $$

Note that the proof works for any field ${\mathbb K}$ and that $\psi _u(P)=0$ . Furthermore, if ${u=2m}$ , then $\omega =({\psi _{m+1}}/{\psi _{m-1}})(P)$ ; otherwise $\omega =({\psi _{m+1}}/{\psi _m})(P)$ . This result will become a particular case of our generalisation and is already a precision of Ward’s symmetry theorem for the elliptic sequence $(\psi _n)$ .

Theorem 1.2 [Reference Ward7]

Let W be an integer elliptic sequence such that $W(1)=1$ and $W(2)\mid W(4)$ . Let p be an odd prime and suppose that $W(2)W(3) \not \equiv 0 \bmod p$ . Let u be the rank of apparition of W with respect to p (that is, $W(u) \equiv 0$ and $W(m) \not \equiv 0$ for any $m \mid u$ ). Then there exist integers ${\cal A}$ and ${\cal C}$ such that

(1.3) $$ \begin{align} W(ku+v)={\cal A}^{kv}{\cal C}^{k^2}W(v) \quad \text{for all } k,v \in {\mathbb N}. \end{align} $$

We usually call the smallest positive index of a vanishing term the rank of zero-apparition. If we consider the elliptic sequence $W=\psi (P)$ , the rank of zero-apparition is the order of P on E.

In [Reference Stange5], Stange generalised the concept of an elliptic sequence to a d-dimensional array, called an elliptic net. An elliptic net in this article is a map $W : {\mathbb Z}^d \rightarrow {\mathbb K}$ such that, for all $\mathbf {p},\mathbf {q},\mathbf {r},\mathbf {s}$ in ${\mathbb Z}^d$ ,

(1.4) $$ \begin{align} \kern-8pt W(\mathbf{p}+\mathbf{q}+\mathbf{s})W(\mathbf{p}-\mathbf{q})W(\mathbf{r}+\mathbf{s}) W(\mathbf{r}) &+ W(\mathbf{q}+\mathbf{r}+\mathbf{s})W(\mathbf{q}-\mathbf{r})W(\mathbf{p}+\mathbf{s})W(\mathbf{p}) \notag\\& + W(\mathbf{r}+\mathbf{p}+\mathbf{s})W(\mathbf{r}-\mathbf{p})W(\mathbf{q}+\mathbf{s})W(\mathbf{q})=0. \end{align} $$

We have $W(\mathbf {0})=0$ , where $\mathbf {0}$ is the additive identity element of ${\mathbb Z}^d$ , since $\text {char}({\mathbb K}) \neq 3$ . Stange proved that we can compute $W(\mathbf {v})$ for all $\mathbf {v}$ in ${\mathbb Z}^d$ from (1.4) and initial values $W(\mathbf {v})$ with $\mathbf {v}=\mathbf {e}_i$ , $\mathbf {v}=2\mathbf {e}_i$ , $\mathbf {v}=\mathbf {e}_i+\mathbf {e}_j$ and $\mathbf {v}=2\mathbf {e}_i+\mathbf {e}_j$ with $\{\mathbf {e}_1,\mathbf {e}_2,\ldots ,\mathbf {e}_d\}$ the standard basis of ${\mathbb Z}^d$ . For $\mathbf {s}=\mathbf {0}$ , we deduce that

(1.5) $$ \begin{align} W(\mathbf{p}+\mathbf{q})W(\mathbf{p}-\mathbf{q})W(\mathbf{r})^2=W(\mathbf{p}+\mathbf{r})W(\mathbf{p}-\mathbf{r})W(\mathbf{q})^2- W(\mathbf{q}+\mathbf{r})W(\mathbf{q}-\mathbf{r})W(\mathbf{p})^2. \end{align} $$

An elliptic net W is called degenerate if one of the terms $W(\mathbf {e}_i), W(2\mathbf {e}_i), W(\mathbf {e}_i \pm \mathbf {e}_j)$ (where $i \neq j$ ) is zero, and $W(3\mathbf {e}_1)$ is zero if $d=1$ . As shown in [Reference Stange5], we can define an elliptic net ${\cal W}=W_{E,\mathbf {P}}$ associated to the elliptic curve E and a d-tuple of fixed points $\mathbf {P}=(P_1,P_2,\ldots ,P_d)$ on $E^d$ with $P_i=(x_i,y_i) \neq 0_E$ for $1 \leq i \leq d$ and $P_i \pm P_j \neq 0_E$ for $i\neq j$ , using the recurrence relation (1.4) and initial values

$$ \begin{align*}{\cal W}(\mathbf{e}_i)=1, \quad {\cal W}(2\mathbf{e}_i)=2y_i, \quad {\cal W}(\mathbf{e}_i+\mathbf{e}_j)=1, \quad {\cal W}(2\mathbf{e}_i+\mathbf{e}_j)=2x_i+x_j-\bigg( \frac{y_j-y_i}{x_j-x_i} \bigg).\end{align*} $$

From [Reference Akbary, Bleaney and Yazdani1, Example 2.4], $W(\mathbf {e}_i-\mathbf {e}_j)=W(\mathbf {e}_i+2\mathbf {e}_j)-W(2\mathbf {e}_i+\mathbf {e}_j)$ , so ${\cal W}(\mathbf {e}_i-\mathbf {e}_j)=x_j-x_i$ . The nondegenerate case therefore reduces to ${\cal W}(2 \mathbf {e}_i) \neq 0 \ (1 \leq i \leq d)$ with ${\cal W}(3 \mathbf {e}_1) \neq 0$ when $d=1$ .

From (1.5) with $\mathbf {r}=\mathbf {e}_r$ , we obtain (1.1) when $d=1$ (note that, in general, $W_1=1$ [Reference Ward7, Ch. VII]). Therefore, elliptic nets are effectively a generalisation of elliptic sequences.

Even though it is not essential for our purpose, we take the opportunity to show the converse, that is, that (1.1) implies (1.4) for $d=1$ , by giving the missing elementary proof reported in [Reference Stange4, Ch. 3, page 22].

Proposition 1.3. For all $(p,q,r,s) \in {\mathbb Z}^4$ ,

(1.6) $$ \begin{align} \psi_{p+q+s}\psi_{p-q}\psi_{r+s}\psi_r+\psi_{q+r+s}\psi_{q-r}\psi_{p+s}\psi_p+\psi_{r+p+s}\psi_{r-p}\psi_{q+s}\psi_q=0. \end{align} $$

Proof. For any $(\alpha ,\beta ) \in {\mathbb Z}^2$ , the integers $\alpha +\beta +1$ and $\alpha -\beta $ have different parities. Thus, we obtain $\psi _{\alpha +\beta +1}\psi _{\alpha -\beta }\psi _2\psi _1=\psi _{\beta +2}\psi _{\beta -1}\psi _{\alpha +1}\psi _\alpha -\psi _{\alpha +2}\psi _{\alpha -1}\psi _{\beta +1}\psi _\beta $ from the expressions for $\psi _{2k+1}\psi _1$ and $\psi _{2k'}\psi _2$ for the left-hand side and from (1.1) for the right-hand side, since the terms on each side of the subtraction can be coupled in pairs of products $\psi _{\imath }\psi _{\jmath }$ whose indexes have the same parity, which can be written in terms of k and $k'$ . Accordingly, we deduce a modified version of Stephen Nelson’s form: for all $(\alpha ,\beta ,\gamma ,\delta ) \in {\mathbb Z}^4,$

(1.7) $$ \begin{align} \psi_{\alpha+\beta+1}\psi_{\alpha-\beta}\psi_{\gamma+\delta+1}\psi_{\gamma-\delta}+ \psi_{\alpha+\gamma+1}\psi_{\alpha-\gamma}\psi_{\delta+\beta+1}\psi_{\delta-\beta}+ \psi_{\alpha+\delta+1}\psi_{\alpha-\delta}\psi_{\beta+\gamma+1}\psi_{\beta-\gamma}=0. \end{align} $$

The equality (1.6) follows by setting $r=\beta -\alpha , p=\gamma -\alpha , q=\delta -\alpha $ and, according to the parity, $s=2\alpha $ in (1.2) or $s=2\alpha +1$ in (1.7).

For the symmetries, for the case $d=1$ [Reference Stange4, Theorem 10.2.2], with ${\cal W}(u)=0\ (u \in {\mathbb Z})$ at a point P of E, we have, for all $k \in {\mathbb Z}$ ,

$$ \begin{align*}{\cal W}(ku+v)={\cal A}^{kv}{\cal C}^{k^2}{\cal W}(v) \quad \mathrm{with} \ {\cal A}=\frac{{\cal W}(u+2)}{{\cal W}(u+1){\cal W}(2)} \text{ and } {\cal C}=\frac{{\cal W}(u+1)}{{\cal A}}.\end{align*} $$

For the case $d=2$ [Reference Stange4, Lemma 10.2.5], with ${\cal W}(\mathbf {u})={\cal W}({u_1,u_2})=0\ (\mathbf {u}=(u_1,u_2) \in {\mathbb Z}^2)$ , $\mathbf {P}=(P_1,P_2) \in E^2$ and $\mathbf {v}=(v_1,v_2) \in {\mathbb Z}^2$ , we have, for all $k \in {\mathbb Z}$ ,

$$ \begin{align*} {\cal W}(k\mathbf{u}+\mathbf{v}) ={\cal A}_1^{kv_1}{\cal A}_2^{kv_2}{\cal C}^{k^2} & {\cal W}(\mathbf{v}) \quad \mathrm{with} \ {\cal A}_1=\frac{{\cal W}(u_1+2,u_2)}{{\cal W}(u_1+1,u_2){\cal W}(2,0)}, \\ &{\cal A}_2=\frac{{\cal W}(u_1,u_2+2)}{{\cal W}(u_1,u_2+1){\cal W}(0,2)}, \ {\cal C}=\frac{{\cal W}(u_1+1,u_2+1)}{{\cal A}_1{\cal A}_2{\cal W}(1,1)}. \end{align*} $$

There are some general results in the literature [Reference Stange4, Theorem 10.2.3] and [Reference Akbary, Bleaney and Yazdani1, Theorem 1.13] for any natural integer d, presented as a generalisation of Ward’s theorem (1.3), which we give here in a succinct form to avoid overloading the presentation. For the version ([Reference Stange4], [Reference Akbary, Bleaney and Yazdani1, Theorem 1.12]), which deals with nondegenerate elliptic nets associated with an elliptic curve and a d-tuple of points on it,

(1.8) $$ \begin{align} {\cal W}(\mathbf{u}+\mathbf{v})=\delta(\mathbf{u},\mathbf{v}) {\cal W}(\mathbf{v}) \quad \text{for all } \mathbf{v} \in {\mathbb Z}^d, \end{align} $$

where ${\cal W}(\mathbf {u})=0$ and $\delta $ is a quadratic function that is linear in the second factor. Stange’s version has a rather complicated proof [Reference Stange4, Theorem 10.2.3, page 62] and a simplified version of its proof with ‘general’ elliptic nets W can be found in [Reference Akbary, Bleaney and Yazdani1, Theorem 1.13] with a factorised form of $\delta $ into linear and quadratic forms: that is,

(1.9) $$ \begin{align} W(\mathbf{u}+\mathbf{v})=\xi(\mathbf{u})\chi(\mathbf{u},\mathbf{v}) W(\mathbf{v}) \quad \text{for all } \mathbf{v} \in {\mathbb Z}^d. \end{align} $$

To obtain their results, Ward and Stange use complex analysis, which requires the nondegeneracy hypothesis. The authors in [Reference Akbary, Bleaney and Yazdani1] use the recurrence (1.4), which allows them to remove the nondegeneracy condition and deal with elliptic nets that do not necessarily come from elliptic curves but with the property that $\Lambda =W^{-1}(0)$ is a subgroup of ${\mathbb Z}^d$ and $|{\mathbb Z}^d/\Lambda |\geq 4$ . The result (1.9) is presented as a generalisation of (1.3) by letting ${\cal A}=\chi (v,1)$ and ${\cal C}=\xi (u)$ (see [Reference Akbary, Bleaney and Yazdani1] for more details).

The purpose of this article is to prove the following result that unifies [Reference Ward7, Theorem 9.2], [Reference Dewaghe2, Theorem 1], [Reference Stange4, Theorem 10.2.3] and [Reference Akbary, Bleaney and Yazdani1, Theorem 1.13].

Theorem 1.4. For a nondegenerate elliptic net ${\cal W}=W_{E,\mathbf{P}}$ associated to an elliptic curve E and a d-tuple of fixed points $\mathbf {P}=(P_1,P_2,\ldots ,P_d)$ on $E^d$ such that ${\cal W}(\mathbf {u})=0$ with $\mathbf {u} \in ({\mathbb Z}^*)^d \ (d \in {\mathbb N})$ , we have, for all $k \in {\mathbb Z}$ and $\mathbf {v}=(v_1,v_2,\ldots ,v_d) \in {\mathbb Z}^d$ ,

(1.10) $$ \begin{align} {\cal W}(k\mathbf{u}+\mathbf{v})={\cal C}^{k^2} \bigg(\prod_{r=1}^d {\cal A}_r^{v_r} \bigg)^k \times {\cal W}(\mathbf{v}) \end{align} $$

with

$$ \begin{align*} {\cal A}_r & =\frac{{\cal W}(\mathbf{u}+2\mathbf{e}_r)}{{\cal W}(\mathbf{u}+\mathbf{e}_r){\cal W}(2\mathbf{e}_r)} \quad\text{for all } r \in \{1,2,\ldots,d\}, \\[6pt] {\cal C} & =\left\{ \begin{array}{@{}ll} \dfrac{{\cal W}(\mathbf{u}+\mathbf{1})}{{\cal W}(\mathbf{1}) \times \prod_{r=1}^d {\cal A}_r} & \mathrm{if} \ \mathbf{u} \neq \mathbf{1}, \\\\[-5pt] -{\cal A}_s {\cal W}(\mathbf{u}-\mathbf{e}_s) \ \ (s \in \{1,2,\ldots,d\}) \ & \mathrm{if} \ \mathbf{u} = \pm \mathbf{1}. \end{array} \right. \end{align*} $$

We limit ourselves to elliptic nets of the form ${\cal W}$ . Indeed, Ward [Reference Ward7] showed that almost all elliptic divisibility sequences are of the form ${\cal W}=W_{E,P}=\psi _n(P)$ and Stange [Reference Stange, Lauter, Avanzi, Keliher and Sica6] reports that ‘nearly all elliptic nets arise in this way’, and are hence of the form ${\cal W}=W_{E,\mathbf {P}}$ . On the other hand, in [Reference Akbary, Bleaney and Yazdani1], to ensure that $\Lambda $ is a group, the authors use the hypothesis that each elliptic sequence $W(ne_i) \ (n \in \{1,2,\ldots ,d\})$ has a unique rank of zero-apparition. In our context, this means that all points $P_i$ are of finite order on E, which seems to be very restrictive in a field of characteristic different from zero.

Note that, from [Reference Stange5, Corollary 5.2], we have the equivalence between ${\cal W}(\mathbf {u})=0$ and $\mathbf {u}.\mathbf {P}=0_E$ . The zeros of an elliptic net then appear as a sublattice of ${\mathbb Z}^d$ , called the lattice of zero-apparition [Reference Stange, Lauter, Avanzi, Keliher and Sica6, Definition 3].

2. Periodicity

2.1. Generalities

In this paragraph, we consider, for d in ${\mathbb N}_{\geq 2}$ and $\pmb {\ell }=(\ell _1,\ell _2,\ldots , \ell _d)$ in ${\mathbb Z}^d$ , a multi-index sequence denoted by $G_{\pmb {\ell }}=G_{\ell _1,\ell _2,\ldots , \ell _d}$ of elements in the field ${\mathbb K}$ . We say that the sequence $G_{\pmb {\ell }}$ is ${\mathbb Z}$ -geometric if, for all k fixed in $\{1,2,\ldots ,d\}$ and $\pmb {\ell }$ fixed in ${\mathbb Z}^d$ , the sequence $G_{\ell _1,\ell _2,\ldots ,\ell _{k-1},\ell ,\ell _{k+1},\ldots , \ell _d}={\cal G}_\ell $ is geometric. To be more explicit, for all k in $\{1,2,\ldots ,d\}$ we set ${\pmb {\ell }}_k=(\ell _1, \ell _2, \ldots ,\ell _{k-1},\ell _{k+1},\ldots ,\ell _d)$ in ${\mathbb Z}^{d-1}$ and define the ratios $q^{(k)}_{{\pmb {\ell }}_k}$ in ${\mathbb K}$ such that $G_{\pmb {\ell }+\mathbf {e}_k}= q^{(k)}_{{\pmb {\ell }}_k} G_{\pmb {\ell }}$ .

We prove the following lemma, which is useful for obtaining our final result.

Lemma 2.1. Consider a ${\mathbb Z}$ -geometric sequence $(G_{\pmb {\ell }})_{\pmb {\ell } \in {\mathbb Z}^d}$ of elements in the field ${\mathbb K}$ such that

$$ \begin{align*}\text{for all } u\neq v \in \{1,2,\ldots,d\}, \quad G_{\pmb{\ell}+\mathbf{e}_u+\mathbf{e}_v}G_{\pmb{\ell}}=G_{\pmb{\ell}+\mathbf{e}_u}G_{\pmb{\ell}+\mathbf{e}_v}.\end{align*} $$

Then, the sequence $G_{\pmb {\ell }}$ is geometric in each direction $\mathbf {e}_k$ for $k \in \{1,2,\ldots ,d\}$ , namely,

$$ \begin{align*} \text{for all } k \in \{1,2,\ldots,d\} \text{ there exists } q_k \in {\mathbb K}, \quad G_{\pmb{\ell}+\mathbf{e}_k}=q_kG_{\pmb{\ell}}. \end{align*} $$

Proof. We show this result by induction on the integer d.

In the case $d=2$ , for $i\neq j$ in $\{1,2\}$ , from $G_{\pmb {\ell }+\mathbf {e}_j}G_{\pmb {\ell }-\mathbf {e}_j}=G_{\pmb {\ell }}^2$ since $G_{\pmb {\ell }}$ is ${\mathbb Z}$ -geometric, we deduce that $q_{{\pmb {\ell }}_j+1}^{(i)}G_{\pmb {\ell }-\mathbf {e}_i+\mathbf {e}_j}q_{{\pmb {\ell }}_j-1}^{(i)}G_{\pmb {\ell }-\mathbf {e}_i-\mathbf {e}_j}=(q_{{\pmb {\ell }}_j}^{(i)}G_{\pmb {\ell }-\mathbf {e}_i})^2$ so $q_{{\pmb {\ell }}_j}^{(i)}$ is a geometric sequence whose ratio is denoted $r_j$ . So, we have $q_{{\pmb {\ell }}_j}^{(i)}=r_j^{\ell _j}q_0^{(i)}$ . Expressing $G_{1,1}$ in terms of $G_{0,0}$ gives $r_1=r_2$ and, from $G_{1,1}G_{0,0}=G_{1,0}G_{0,1}$ , we find that $r_1=r_2=1$ . Finally, we obtain $G_{\pmb {\ell }+\mathbf {e}_i}=q_{{\pmb {\ell }}_j}^{(i)}G_{\pmb {\ell }}=r_j^{\ell _j}q_0^{(i)}G_{\pmb {\ell }}=q_0^{(i)}G_{\pmb {\ell }}=q_iG_{\pmb {\ell }}$ with $q_0^{(i)}=q_i$ .

For the case $d>2$ , in the same way, we deduce, for k in $\{1,2, \ldots ,d\}$ , that $q_{{\pmb {\ell }}_k}^{(k)}$ is ${\mathbb Z}$ -geometric. On the other hand, for $u \neq v$ , $q_{{\pmb {\ell }}_k}^{(k)}$ satisfies $\ q_{{\pmb {\ell }}_k+\mathbf {e}_u+\mathbf {e}_v}^{(k)}q_{{\pmb {\ell }}_k}^{(k)}=q_{{\pmb {\ell }}_k+\mathbf {e}_u}^{(k)}q_{{\pmb {\ell }}_k+\mathbf {e}_v}^{(k)}$ . Therefore, by the inductive hypothesis,

$$ \begin{align*} \text{for all } k \in \{1,2,\ldots,d\} \text{ and } \text{for all } j \neq k, \text{ there exists } r_{k,j} \in {\mathbb{K}}, \quad q_{{\pmb{\ell}}_k+{\bar {\mathbf{e}}_j}}^{(k)}=r_{k,j}q_{{\pmb{\ell}}_k}^{(k)},\\[-13pt]\end{align*} $$

where ${\bar {\mathbf {e}}_j}$ is the projection of ${\mathbf {e}}_j$ over ${\mathrm {span}}_{\mathbb {Z}} ({\mathbf {e}}_1,\ldots ,{\mathbf {e}}_{k-1},{\mathbf {e}}_{k+1},\ldots ,{\mathbf {e}}_d)$ . It follows that $q_{{\pmb {\ell }}_k}^{(k)}=\prod _{1\le j\le d,{j\neq k}}r_{k,j}^{\ell _j} q_{{\mathbf {0}}_{d-1}}^{(k)}$ with $\mathbf {0}_{d-1}=(0,0,\ldots ,0)$ in ${\mathbb Z}^{d-1}$ and thus we have $G_{\pmb {\ell }+\mathbf {e}_k}=\prod _{1\le j\le d,{j\neq k}}r_{k,j}^{\ell _j} q_{\mathbf {0}_{d-1}}^{(k)} G_{\pmb {\ell }}.$ So, for $u\neq v$ in $\{1,2,\ldots ,d\}$ , we can write $G_{\mathbf {e}_u+\mathbf {e}_v}=r_{v,u}q_{\mathbf {0}_{d-1}}^{(v)} q_{\mathbf {0}_{d-1}}^{(u)} G_{\mathbf {0}}= G_{\mathbf {e}_v+\mathbf {e}_u}$ . Hence, $r_{u,v}=r_{v,u}$ . Finally, from $G_{\mathbf {e}_u+\mathbf {e}_v}G_{\mathbf {0}}=G_{\mathbf {e}_u}G_{\mathbf {e}_v}$ , we obtain $r_{u,v}=1$ and so, for all k in $\{1,2,\ldots ,d\}$ , we have $G_{\pmb {\ell }+\mathbf {e}_k}=q_{\mathbf {0}_{d-1}}^{(k)} G_{\pmb {\ell }} =q_k G_{\pmb {\ell }}$ .

2.2. Geometric sequence of quotient of elliptic nets

We consider a nondegenerate elliptic net ${\cal W}=W_{E,\mathbf {P}}$ associated to the elliptic curve E and the d-tuple of fixed points $\mathbf {P}=(P_1,P_2,\ldots ,P_d)$ on $E^d$ . We assume that there is $\mathbf {u}=(u_1,\ldots ,u_d)$ in ${\mathbb Z}^d$ with ${\cal W}(\mathbf {u})={\cal W}_{E,\mathbf {P}}=0$ . In other words, $\mathbf {u}.\mathbf {P}=u_1P_1+\cdots +u_dP_d=0_E$ [Reference Stange5, Corollary 5.2].

In equation (1.5), we set $\mathbf {r}=\mathbf {e}_r \ (r \in \{1,2,\ldots ,d\})$ , $\mathbf {p} = \mathbf {i}-\pmb {\ell }$ and $\mathbf {q} = \mathbf {j}+\pmb {\ell }$ with $ \pmb {\ell }, \mathbf {i}, \mathbf {j} \in {\mathbb Z}^d$ and we consider $\mathbf {i}+\mathbf {j}=\mathbf {u}$ . We obtain, for all r in $\{ 1,2,\ldots ,d \}$ ,

(2.1) $$ \begin{align} {\cal W}(\mathbf{i}-\pmb{\ell}+\mathbf{e}_r){\cal W}(\mathbf{i}-\pmb{\ell}-\mathbf{e}_r){\cal W}(\mathbf{j}+\pmb{\ell})^2- {\cal W}(\mathbf{j}+\pmb{\ell}+\mathbf{e}_r){\cal W}(\mathbf{j}+\pmb{\ell}-\mathbf{e}_r){\cal W}(\mathbf{ i}-\pmb{\ell})^2=0. \end{align} $$

This equation does not provide any information in certain cases, for example, for $\pmb {\ell }=\mathbf {i}\pm \mathbf {e}_r, \mathbf {i}$ . We now define

$$ \begin{align*}G_{\pmb{\ell}}=\frac{{\cal W}(\mathbf{j}+\pmb{\ell})}{{\cal W}(\mathbf{i}-\pmb{\ell})},\end{align*} $$

which depends on $\mathbf {i}$ and $\mathbf {j}$ but we will fix them later. Note also that $G_{\pmb {\ell }}$ is not defined for some $\pmb {\ell }$ , for example, for $\pmb {\ell }=\mathbf {i}, \pmb {\ell }=-\mathbf {j}$ . From (2.1),

(2.2) $$ \begin{align} \text{for all } r \in \{1,2,\ldots,d \}, \quad G_{\pmb{\ell}+\mathbf{e}_r} \times G_{\pmb{\ell}-\mathbf{e}_r}=G_{\pmb{\ell}}^2. \end{align} $$

Again, (2.2) does not make sense for some values of $\pmb {\ell }$ . We will come back later to all these problematic cases (see Section 2.3) and we provisionally assume that $G_{\pmb {\ell }}$ is well defined for all $\pmb {\ell }$ in ${\mathbb Z}^d$ .

So, the sequence $G_{\pmb {\ell }}$ is ${\mathbb Z}$ -geometric. Furthermore, from (1.4) with $\mathbf {p}=-\mathbf {e}_u$ , $\mathbf {q}=\mathbf {j}+\pmb {\ell }+\mathbf {e}_v$ , $\mathbf {r}=\mathbf {i}-\pmb {\ell }-\mathbf {e}_u$ and $\mathbf {s}=\mathbf {e}_u-\mathbf {e}_v$ , we obtain

$$ \begin{align*}\text{for all } u\neq v \in \{1,2,\ldots,d\}, \quad G_{\pmb{\ell}+\mathbf{e}_u+\mathbf{e}_v}G_{\pmb{\ell}}=G_{\pmb{\ell}+\mathbf{e}_u}G_{\pmb{\ell}+\mathbf{e}_v}.\end{align*} $$

From the previous section, with $q_r={G_{\mathbf {e}_r}}/{G_{\mathbf {0}}}$ , we deduce that

$$ \begin{align*}\text{for all } r \in \{1,\ldots,d\}, \text{ there exists } q_r \in {\mathbb K}, \quad G_{\pmb{\ell}+\mathbf{e}_r}=q_r G_{\pmb{\ell}}.\end{align*} $$

Finally,

(2.3) $$ \begin{align} \text{for all } \pmb{\ell}=(\ell_1,\ell_2,\ldots,\ell_d) \in {\mathbb Z}^d, \quad G_{\pmb{\ell}}=\prod_{r=1}^d q_r^{\ell_r} G_{\mathbf{0}}. \end{align} $$

However, this result omits the problematic cases mentioned, which does not guarantee the existence of $G_{\pmb {\ell }}$ for some $\pmb {\ell }$ in ${\mathbb Z}^d$ . Thus, we do not know whether we are keeping the same ratio through certain points of ${\mathbb Z}^d$ in a given direction. We deal with these questions in the following section.

Before doing so, we fix ${\mathbf {i}}$ and $\mathbf {j}$ with ${\mathbf {u}}={\mathbf {i}}+\mathbf {j}$ . For that, for all r in $\{1,2,\ldots ,d\}$ , if $u_r=2w_r \ (\overline {u_r} \equiv u_r \bmod 2 =0)$ , we set $i_r=w_r-1$ ; but if $u_r=2w_r+1 \ (\overline {u_r}=1)$ , we set $i_r=w_r$ and, in all cases, $j_r=w_r+1$ . Thus, if ${{\mathbf {i}}}=(i_1,i_2,\ldots ,i_d)$ and ${\mathbf {j}}=(j_1,j_2,\ldots ,j_d)$ , writing ${\bar {\mathbf {u}}} \equiv {\mathbf {u}} \bmod 2$ and $\mathbf {1}=(1,1,\ldots ,1)$ in ${\mathbb Z}^d$ , we have

$$ \begin{align*}{\mathbf{i}}=\frac{{\mathbf{u}}+{\bar {\mathbf{u}}}}{2}-\mathbf{1} \quad \mathrm{and} \quad \mathbf{j}=\frac{{\mathbf{u}}-{\bar {\mathbf{u}}}}{2}+\mathbf{1}.\end{align*} $$

It can be observed that $G_{\pmb {\ell }}'=G_{\pmb {\ell }}^{-1}$ with ${\pmb {\ell }}'={\bar {\mathbf {u}}}-2\times {\mathbf {1}}-{\pmb {\ell }}$ .

2.3. Problematic cases

First, if ${\mathbf {u}}={\mathbf {u}}_1+{\mathbf {u}}_2$ in ${\mathbb Z}^d$ with ${\cal W}_{{\mathbf {u}}}=0$ , then ${\cal W}_{{\mathbf {u}}_1}=0 \Leftrightarrow {\cal W}_{{\mathbf {u}}_2}=0$ . Thus, the quantities $G_{\pmb {\ell }}$ do not cancel, but are not defined at some points of ${\mathbb Z}^d$ . Moreover, the nondegeneracy hypothesis tells us that a problematic case can only occur on one of three (four if $d=1$ ) consecutive terms of the sequence $G_{\pmb {\ell }}$ in one direction. We will come back to the special cases of points of order two or three in Section 2.6. On the other hand, if $G_{\pmb {\ell }}$ and $G_{\pmb {\ell }}'$ are not defined, then $(\pmb {\ell }-{\pmb {\ell }}').\mathbf {P}=0_E$ . We deduce that, if $G_{\pmb {\ell }}$ is not defined, then this is not the case for the $G_{\pmb {\ell } +\delta \mathbf {e}_r}$ such that $\delta $ is in $\{\pm 1, \pm 2\}$ for r in $\{ 1,2,\ldots ,d\}$ or even for $G_{\pmb {\ell } \pm \mathbf {e}_r \pm \mathbf {e}_s} \ (r \neq s)$ .

We show that we keep the same ratio $q_r \ ( r \in \{1,2,\ldots ,d\})$ through a problematic case of index $\pmb {\ell }$ in the direction $\mathbf {e}_r$ . This means that ${\cal W}(\mathbf {j}+\pmb {\ell })= {\cal W}({\mathbf {i}}-\pmb {\ell })=0$ . We define the value of $G_{\pmb {\ell }}$ by the expression ${G_{\pmb {\ell }-\mathbf {e}_r}^2}/{G_{\pmb {\ell }-2 \mathbf {e}_r}}=q_rG_{\pmb {\ell }-\mathbf {e}_r}$ . Then, from the addition formula on an elliptic curve expressing $x((\mathbf {r}+\mathbf {s}).\mathbf {P})$ and $x((\mathbf {r}-\mathbf {s}).\mathbf {P})$ for $\mathbf {r} \neq \mathbf {s}$ in $({\mathbb Z}^d)^*$ such that $x(\mathbf {r}.\mathbf {P}) \neq x(\mathbf {s}.\mathbf {P})$ and [Reference Stange5, Lemma 4.2], we obtain ${\cal W}(2\mathbf {r}){\cal W}(2\mathbf {s})=4 y(\mathbf {r}.\mathbf {P})y(\mathbf {s}.\mathbf {P}){\cal W}(\mathbf {r})^4{\cal W}(\mathbf {s})^4$ . Hence, if $\mathbf {s}=\mathbf {e}_s$ for $s\neq r$ in $\{1,2,\ldots ,d\}$ with ${x(\mathbf {r}.\mathbf {P})\neq x(P_s)}$ , we deduce that

(2.4) $$ \begin{align} {\cal W}(2 \mathbf{r}) =2y(\mathbf{r}.\mathbf{P}) {\cal W}(\mathbf{r})^4, \end{align} $$

for r in $\{1,2,\ldots ,d\}$ . With $\mathbf {r}=\mathbf {j}+\pmb {\ell }-\mathbf {e}_r$ , so that $y(\mathbf {r}.\mathbf {P})=-y_r$ in (2.4), we obtain ${\cal W}(2(\mathbf {j}+\pmb {\ell }-\mathbf {e}_r))=-{\cal W}(2\mathbf {e}_r){\cal W}(\mathbf {j}+\pmb {\ell }-\mathbf {e}_r)^4$ . Combining this with (1.5) for $\mathbf {p}=\mathbf {j}+\pmb {\ell }$ , $\mathbf {q}=\mathbf {j}+\pmb {\ell }-2 \mathbf {e}_r$ and $\mathbf {r}=\mathbf {e}_r$ gives

(2.5) $$ \begin{align} {\cal W}(\mathbf{j}+\pmb{\ell}+\mathbf{e}_r) {\cal W}(\mathbf{j}+\pmb{\ell}-2\mathbf{e}_r)^2=-{\cal W}(2 \mathbf{e}_r)^2 {\cal W}(\mathbf{j}+\pmb{\ell}-\mathbf{e}_r)^3. \end{align} $$

In the same way, with $\mathbf {r}=\mathbf {i}-\pmb {\ell }+\mathbf {e}_r$ in (2.4) and $\mathbf {p}=\mathbf {i}-\pmb {\ell }$ , $\mathbf {q}=\mathbf {i}-\pmb {\ell }+2 \mathbf {e}_r$ and $\mathbf {r}=\mathbf {e}_r$ in (1.5), we obtain

(2.6) $$ \begin{align} {\cal W}(\mathbf{i}-\pmb{\ell}-\mathbf{e}_r) {\cal W}(\mathbf{i}-\pmb{\ell}+2\mathbf{e}_r)^2=-{\cal W}(2 \mathbf{e}_r)^2 {\cal W}(\mathbf{i}-\pmb{\ell}+\mathbf{e}_r)^3. \end{align} $$

From (2.5) and (2.6), we deduce that

$$ \begin{align*}&{\cal W}(\mathbf{j}+\pmb{\ell}+\mathbf{e}_r) {\cal W}(\mathbf{j}+\pmb{\ell}-2\mathbf{e}_r)^2 {\cal W}(\mathbf{i}-\pmb{\ell}+\mathbf{e}_r)^3\\ &\quad= {\cal W}(\mathbf{i}-\pmb{\ell}-\mathbf{e}_r) {\cal W}(\mathbf{i}-\pmb{\ell}+2\mathbf{e}_r)^2 {\cal W}(\mathbf{j}+\pmb{\ell}-\mathbf{e}_r)^3,\end{align*} $$

and, therefore, $G_{\pmb {\ell }+\mathbf {e}_r}={G_{\pmb {\ell }}^2}/{G_{\pmb {\ell }-\mathbf {e}_r}}=q_r G_{\pmb {\ell }}$ with the new definition of $G_{\pmb {\ell }}$ .

Next, for all $\lambda $ and $\mu $ in ${\mathbb Z}^*$ , we set $\mathbf {p}=\mathbf {i}-\pmb {\ell }+\lambda \mathbf {e}_r$ , $\mathbf {q}=\lambda \mathbf {e}_r + \mu \mathbf {e}_r$ , $\mathbf {r}=\mathbf {j}+\pmb {\ell }+\lambda \mathbf {e}_r$ and $\mathbf {s}=-2 \lambda \mathbf {e}_r$ with $r \in \{1,2,\ldots ,d\}$ in (1.4). We obtain $G_{\pmb {\ell }+\lambda \mathbf {e}_r}G_{\pmb {\ell }-\lambda \mathbf {e}_r}=G_{\pmb {\ell }+\mu \mathbf {e}_r}G_{\pmb {\ell }+\mu \mathbf {e}_r},$ and, therefore, $G_{\pmb {\ell }+2 \mathbf {e}_r}/G_{\pmb {\ell }+\mathbf {e}_r}=G_{\pmb {\ell }- \mathbf {e}_r}/G_{\pmb {\ell }-2\mathbf {e}_r}=q_r$ .

Finally, we show that the definition of $G_{\pmb {\ell }}$ in the direction $\mathbf {e}_r$ is consistent with that in another direction $\mathbf {e}_s$ , which we denote by ${\widetilde G}_{\pmb {\ell }}$ . For that, we set $\mathbf {p}=\mathbf {j}+\pmb {\ell }-\mathbf {e}_r -\mathbf {e}_s$ , $\mathbf {q}=\mathbf {i}- \pmb {\ell } + \mathbf {e}_r + \mathbf {e}_s$ and $\mathbf {r}=\mathbf {e}_r-\mathbf {e}_s$ in (1.5) to obtain $G_{\pmb {\ell }-\mathbf { e}_r-\mathbf {e}_s}^2=G_{\pmb {\ell }-2\mathbf {e}_s}G_{\pmb {\ell }-2\mathbf {e}_r}$ , and so $G_{\pmb {\ell }-\mathbf {e}_r}^2G_{\pmb {\ell }-2\mathbf {e}_s}=G_{\pmb {\ell }-\mathbf {e}_s}^2G_{\pmb {\ell }-2\mathbf {e}_r}$ , that is, $G_{\pmb {\ell }}={\widetilde G}_{\pmb {\ell }}$ . So, for a problematic index $\pmb {\ell }$ , we can set $G_{\pmb {\ell }}=q_rG_{\pmb {\ell }-\mathbf {e}_r}$ to ensure that $G_{\pmb {\ell }}$ is geometric in each direction.

Example 2.2. For the curve $y^2=x^3+2x-4$ over ${\mathbb F}_{73}$ and the points $P_1=(36,71)$ , $P_2=(51,53)$ , $P_3=(7,34)$ , we have $U=(3,5,7)$ and $(q_1,q_2,q_3)=(22,71,58)$ . The values $G_{\mathbf {i}}$ and $G_{\mathbf {-j}}$ are not defined. We set $G_{\mathbf {i}}=q_rG_{\mathbf {i}-\mathbf {e}_r}=47$ and $G_{-\mathbf {j}}=q_rG_{-\mathbf {j}-\mathbf {e}_r}=14$ . The values of $G_{\mathbf {i}+k\mathbf {e}_r} \ (k \in \{-3;3\})$ are, for $r=1,2,3$ successively,

$$ \begin{align*}\{61,28,32,\mathbf{47},12,45,45 \}, \quad \{58,30,13,\mathbf{47},52,42,62\}, \quad \{23,20,65,\mathbf{47},25,63,4\},\end{align*} $$

and for $G_{-\mathbf {j}+k\mathbf {e}_r}$ ,

$$ \begin{align*}\{57,13,67,\mathbf{14},16,60,6\}, \quad \{53,40,66,\mathbf{14},45,56,34\}, \quad \{55,51,38,\mathbf{14},9,11,54\}.\end{align*} $$

We can give a harmonious formulation of the ratios $q_r$ in terms of G and, therefore, of ${\cal W}$ , if the quantities involved are well defined. Indeed, from (2.2) for $\pmb {\ell }=\mathbf {e}_r-\mathbf {1}$ , we obtain $G_{2\mathbf {e}_r-\mathbf {1}}G_{-\mathbf {1}}=G_{\mathbf {e}_r-\mathbf {1}}^2$ for all r in $\{1,2,\ldots ,d\}$ . With $G_{2\mathbf {e}_r-\mathbf {1}}=q_r G_{\mathbf {e}_r-\mathbf {1}}$ and ${G_{-\mathbf {1}}=G_{\bar {{\mathbf {u}}}-\mathbf {1}}^{-1},}$ we deduce that

(2.7) $$ \begin{align} \text{for all } r \in \{ 1,2,\ldots,d\}, \quad q_r=G_{{\bar {\mathbf{u}}}-\mathbf{1}}\times G_{\mathbf{e}_r-\mathbf{1}}= \frac{{\cal W}(\frac{{\mathbf{u}}+{\bar {\mathbf{u}}}}{2})}{{\cal W}(\frac{{\mathbf{u}}-{\bar {\mathbf{u}}}}{2})} \times \frac{{\cal W}(\frac{{\mathbf{u}}-{\bar {\mathbf{u}}}}{2}+\mathbf{e}_r)}{{\cal W}(\frac{{\mathbf{u}}+{\bar {\mathbf{u}}}}{2}-\mathbf{e}_r)}. \end{align} $$

Example 2.3. For the curve $y^2=x^3+x+1$ over ${\mathbb F}_{11}$ , we consider the points of order seven, that is, $P_1=(6,5)$ and $P_2=(3,3)$ . We have $3P_1+P_2=0_E=2P_1+3P_2=5P_1+4P_2$ , so ${\mathbf {u}}=(5,4)=(3,1)+(2,3)={\mathbf {u}}_{1}+{\mathbf {u}}_{2}$ . In this case, $G_{(-1,0)}$ and $G_{(0,-2)}$ are not defined since ${\cal W}_{2,3}={\cal W}_{3,1}=0$ and so $q_2$ is not defined. We define $G_{(0,-2)}=q_1G_{(-1,-2)}=4*5=9$ and $G_{(-1,0)}=G_{(0,0)}/q_1=9/4=5=9^{-1}$ . We also set $q_2=G_{(0,-1)}G_{(-1,0)}=2*5=10$ . Note that, at the end of the article, we show that $q_r({\mathbf {u}})=q_r({\mathbf {u}}_1)*q_r({\mathbf {u}}_2)\ (r \in \{1,2\})$ . Indeed, $q({\mathbf {u}})=(4,10)$ , $q({\mathbf {u}}_1)=(6,6)$ and $q({\mathbf {u}}_2)=(8,9)$ .

If we now consider ${\mathbf {u}}=2(3,1)=(6,2)$ , then $G_{-\mathbf 1}$ is not defined, nor are the quantities $q_1$ and $q_2$ . We have $q_1=G_{(1,0)}/G_{(0,0)}=3$ , $q_2=G_{(0,1)}/G_{(0,0)}=3$ and $G_{(-1,-1)}=G_{(0,0)}/(q_1q_2)=-1$ . Once again, we see that $q_r(2{\mathbf {u}})=q_r({\mathbf {u}})^2$ . Indeed, $q((6,2))=(3,3); q((3,1))=(6,6)$ .

For the case ${\mathbf {u}}=\mathbf {1}$ , the quantities $G_{-\mathbf {1}}$ , $G_{\mathbf {0}}$ , and thus the ratios $q_k$ , are not defined. But, we can set

$$ \begin{align*}\text{for all } k \in \{1,2,\ldots,n\}, \quad q_k \stackrel{k'\neq k}{=}\frac{G_{\mathbf{e}_{k'}}}{G_{\mathbf{e}_{k'}-\mathbf{e}_k}},\end{align*} $$

and $G_{-\mathbf {1}}=G_{-\mathbf {1}+\mathbf {e}_k}/q_k$ , $G_{\mathbf {0}}=q_kG_{-\mathbf {e}_k}$ .

For the curve $y^2=x^3+17x-53$ over ${\mathbb F}_{229}$ , we consider the points $P_1=(217,63)$ , $P_2=(153,59)$ , $P_3=(42,211)$ , $P_4=(40,222)$ and $P_5=(13,126)$ . We have ${\mathbf {u}}=\mathbf {1}$ . We can write $q_1=G_{\mathbf {e}_2}/G_{\mathbf {e}_2-\mathbf {e}_1}=211$ and so $q_2=55, q_3= 221, q_4=13, q_5=227$ and $G_{-\mathbf {1}}=G_{\mathbf {e}_1-\mathbf {1}}/q_1=181$ .

So we can have cases where the definition $q_r=G_{{\bar {\mathbf {u}}}-\mathbf {1}}\times G_{\mathbf {e}_r-\mathbf {1}}$ is problematic. However, we can always find $\pmb {\ell }$ in ${\mathbb Z}^d$ so that the ratio $q_r={G_{\pmb {\ell }+\mathbf {e}_r}}/{G_{\pmb {\ell }}}$ is well defined. Nevertheless, the expression (2.7) needs some ${\cal W}$ whose indexes are in the neighbourhood of ${\mathbf {u}}/2$ , which is the best that we can do for the computation of $G_{\pmb {\ell }}$ whose indexes are symmetric with respect to ${\mathbf {u}}/2$ .

2.4. Proof of Theorem 1.4

First, we set $\pmb {\ell }=\mathbf {i}+\mathbf {v}$ for $\mathbf {v}$ in ${\mathbb Z}^d \backslash \Gamma $ , giving

$$ \begin{align*}G_{\pmb{\ell}}=G_{\mathbf{i}+\mathbf{v}}=\frac{{\cal W}(\mathbf{i}+\mathbf{j}+\mathbf{v})}{{\cal W}(-\mathbf{v})}=\frac{{\cal W}({\mathbf{u}}+\mathbf{v})}{{\cal W}(-\mathbf{v})}= -\frac{{\cal W}({\mathbf{u}}+\mathbf{v})}{{\cal W}(\mathbf{v})}.\end{align*} $$

Therefore, from (2.3), we obtain, in the cases where $G_{-\mathbf {1}}$ is well defined,

$$ \begin{align*}{\cal W}({\mathbf{u}}+\mathbf{v})=-G_{\mathbf{i}+\mathbf{v}} {\cal W}(\mathbf{v})= - \bigg( \prod_{r=1}^d q_r^{i_r+v_r+1} \bigg) \,G_{-\mathbf{1}} \times {\cal W}(\mathbf{v}),\end{align*} $$

which holds for $\mathbf {v}$ in ${\mathbb Z}^d$ such that ${\cal W}(\mathbf {v})=0$ . Note that, in this case, since G is geometric in each direction, $G_{-\mathbf {1}}=\prod _{r=1}^d q_r^{-\overline {u_r}} \times G_{\bar {{\mathbf {u}}}-\mathbf {1}}$ ; therefore, $G^2_{-\mathbf {1}}=\prod _{r=1}^d q_r^{-\overline {u_r}}.$ This shows that $\prod _{r=1}^d q_r^{u_r}$ is a square.

For all r in $\{1,2,\ldots ,d \}$ , when $G_{-\mathbf {1}}$ is well defined, we set ${\cal A}_r=q_r$ and ${\cal C}=- ( \prod _{r=1}^d q_r^{i_r+1} ) G_{-\mathbf {1}}$ . Thus, we can write $ {\cal C}^2=\prod _{r=1}^d q_r^{2(i_r+1)}\times G_{-\mathbf {1}}^2=\prod _{r=1}^d {\cal A}_r^{u_r}$ (which is just $\xi ({\mathbf {u}})^2=\chi ({\mathbf {u}},{\mathbf {u}})$ ; see (2.5)). Hence, ${\cal W}({\mathbf {u}}+\mathbf {v})={\cal C} \prod _{r=1}^d {\cal A}_r^{v_r} \times {\cal W}(\mathbf {v})$ and a simple induction on k give the desired result (1.10). The formulas for ${\cal A}$ and ${\cal C}$ in (1.10) follow immediately from the existence of these quantities.

On the other hand, if we set ${\mathbf {u}}_1={({\mathbf {u}}-{\bar {\mathbf {u}}})}/{2}$ and ${\mathbf {u}}_2={({\mathbf {u}}+{\bar {\mathbf {u}}})}/{2}$ with possibly ${\mathbf {u}}_1=\mathbf {u_2}$ , we have $G_{-\mathbf {1}}={{\cal W}({\mathbf {u}}_1)}/{{\cal W}({\mathbf {u}}_2)}$ . Hence, $G_{-\mathbf {1}}$ is not defined if ${\mathbf {u}}=\pm \mathbf {1}$ or ${\mathbf {u}}={\mathbf {u}}_1+{\mathbf {u}}_2$ with ${\mathbf {u}}_1.\mathbf {P}=0_E$ and ${\mathbf {u}}_2.\mathbf {P}=0_E$ . Suppose that ${\mathbf {u}} \neq \pm \mathbf {1}$ . For s in $\{1,2,\ldots ,d\}$ , we have $G_{-\mathbf {e}_s-\mathbf {1} +{\bar {\mathbf {u}}}}=1/G_{-\mathbf {e}_s-\mathbf {1}}$ and thus $q_s^2 \prod _{r=1}^d q_r^{-{\bar {\mathbf {u}}_r}}=G_{-\mathbf {e}_s-\mathbf {1}}^2$ . We still have

$$ \begin{align*}{\cal W}({\mathbf{u}}+\mathbf{v})=-G_{\mathbf{i}+\mathbf{v}} {\cal W}(\mathbf{v})= - \bigg( \prod_{r=1}^d q_r^{i_r+v_r+1} \bigg)\, \frac{G_{\mathbf{e}_s-\mathbf{1}}}{q_s} \times {\cal W}(\mathbf{v}),\end{align*} $$

and so we set ${\cal A}_r=q_r$ and ${\cal C}=- ( \prod _{r=1}^d q_r^{i_r+1} {G_{\mathbf {e}_s-\mathbf {1}}}/{q_s})$ . Note that, for $s \neq s'$ , $G_{\mathbf {e}_s+\mathbf {e}_{s'}-\mathbf {1}}=G_{\mathbf {e}_s-\mathbf {1}}q_{s'}=G_{\mathbf {e}_{s'}-\mathbf {1}}q_s$ . Again, we obtain ${\cal C}^2=\prod _{r=1}^d {\cal A}_r^{u_r}$ .

For ${\mathbf {u}}=\mathbf {1}$ (the case ${\mathbf {u}}=-\mathbf {1}$ can be handled in the same manner), we write instead

$$ \begin{align*}{\cal W}({\mathbf{u}}+\mathbf{v})= - \bigg( \prod_{r=1}^d q_r^{i_r+v_r} \bigg)\, G_{-\mathbf{e}_s}q_s \times {\cal W}(\mathbf{v})= \bigg( \prod_{r=1}^d q_r^{v_r} \bigg)\, (-{\cal W}(\mathbf{1}-\mathbf{e}_s)q_s )\times {\cal W}(\mathbf{v})\end{align*} $$

and set ${\cal A}_r=q_r$ and ${\cal C}=-{\cal W}(\mathbf {1}-\mathbf {e}_s)q_s$ for s in $\{1,2,\ldots ,d\}$ . Note that, since $G_{-\mathbf {e}_s-\mathbf {e}_{s'}}=G_{-\mathbf {e}_{s'}-\mathbf {e}_{s}}$ for $s \neq s'$ , we have ${\cal W}(\mathbf {1}-\mathbf {e}_s)q_s= {\cal W}(\mathbf {1}-\mathbf {e}_{s'})q_{s'}$ . Moreover, ${\cal C}^2=q_1q_2{\cal W}(\mathbf {1}-\mathbf {e}_1){\cal W}(\mathbf {1}-\mathbf {e}_2)$ but

$$ \begin{align*} q_3 & =\frac{G_{-\mathbf{e}_1}}{G_{-\mathbf{e}_1-\mathbf{e}_3}}={\cal W}(\mathbf{1}-\mathbf{e}_1)\times \frac{{\cal W}(\mathbf{1}-\mathbf{e}_2-\mathbf{e}_4 -\cdots-\mathbf{e}_d)}{{\cal W}(\mathbf{e}_2+\mathbf{e}_4 +\cdots+\mathbf{e}_d)} \\ & = {\cal W}(\mathbf{1}-\mathbf{e}_1)\times G_{-\mathbf{e}_2-\mathbf{e}_4 -\cdots-\mathbf{e}_d}={\cal W}(\mathbf{1}-\mathbf{e}_1) \times (q_4\cdots q_d)^{-1} G_{-\mathbf{e}_2}, \end{align*} $$

and hence ${\cal C}^2=\prod _{r=1}^d q_r$ since $G_{-\mathbf {e}_2}={\cal W}(\mathbf {1}-\mathbf {e}_2)$ . This completes the proof of Theorem 1.4.

Moreover, this result includes [Reference Dewaghe2, Theorem 1] for $u>3$ (see (2.6) for $u=2$ or $3$ ). If $u=2m$ then, ${\cal A}=q={\psi _{m+1}}/{\psi _{m-1}}=\omega $ and ${\cal C}=-q^{i+1}G_{-1}=-q^m$ , which gives $\psi _{ku+v}=(-1)^k\omega ^{k(v+km)}\psi _v$ . If $u =2m+1$ , then ${\cal A}=q=({\psi _{m+1}}/{\psi _m})^2=\omega ^2$ and ${\cal C}=-q^{i+1}G_{-1}=-q^{m+1}/\omega =-\omega ^{2m+1}$ , which gives $\psi _{ku+v}=(-1)^k\omega ^{k(2v+k(2m+1))}\psi _v$ .

Example 2.4. Over ${\mathbb Q}$ , the curve $y^2=x^3-4x+1$ with

$$ \begin{align*} P_1=(0,1),\quad P_2= (82264/505521, 213664697/359425431),\quad P_3=(4,7), \end{align*} $$

gives ${\mathbf {u}}=(3,1,2)$ and

$$ \begin{align*} {\cal C}= 255551481441/19041697792,\hspace{10pt} {\cal A}=(711/208, 359425431/297526528, 711/368).\end{align*} $$

We give some calculations to illustrate Theorem 1.4 in Table 1.

Table 1 Calculations illustrating Theorem 1.4 in characteristic zero.

According to the Lutz–Nagell theorem [Reference Silverman3, Ch. 8], the only possible points of $E({\mathbb Q})_{tors}$ are $(0,1), (2,\pm 1)$ and $(-2, \pm 1)$ , which cannot arise according to Mazur’s theorem. As a result, none of the sequences $\psi _n(P_1); \psi _n(P_2); \psi _n(P_3)$ have a rank of zero-apparition.

Over ${\mathbb F}_{7919}$ , the curve $y^2=x^3+1562x+1805$ with the points $P_1=(4856,5835)$ , $P_2=(6128,7637)$ , $P_3=(3336,2121)$ and $P_4=(2415,7795)$ gives ${\mathbf {u}}=(18,17,12,17)$ and ${\cal C}=3648$ , ${\cal A}=(2664,4758,5312,531).$ Some calculations are given in Table 2.

Table 2 Calculations illustrating Theorem 1.4 in nonzero characteristic.

2.5. The latest known general result

We now link our results to [Reference Akbary, Bleaney and Yazdani1, Theorem 1.13]. With the assumptions and the notation $\chi $ and $\xi $ of this theorem, one can write

$$ \begin{align*}{\cal W}({\mathbf{u}}+\mathbf{v})=\xi({\mathbf{u}}) \chi({\mathbf{u}},\mathbf{v}) {\cal W}(\mathbf{v}).\end{align*} $$

More precisely, with $\Lambda =\{ \mathbf {v} \in {\mathbb Z}^d \mid W(\mathbf {v})=0\}$ , the functions $\chi $ and $\xi $ are defined by

$$ \begin{align*} \delta : \Lambda \times ({\mathbb Z}^d \backslash \Lambda) & \ \rightarrow\ {\mathbb K}^* \\ ({\mathbf{u}},\mathbf{v}) & \ \mapsto\ \frac{{\cal W}({\mathbf{u}}+\mathbf{v})}{{\cal W}(\mathbf{v})} \end{align*} $$

and the relations

$$ \begin{align*} \chi : \Lambda \times {\mathbb Z}^d & \ \rightarrow\ {\mathbb K}^*, \\ ({\mathbf{u}},\mathbf{v}) & \ \mapsto\ \frac{\delta({\mathbf{u}},\mathbf{v}+\mathbf{v}')}{\delta({\mathbf{u}},\mathbf{v}')} \quad\text{where } \mathbf{v}' \in {\mathbb Z}^d \text{ but } \mathbf{v}',\mathbf{v}'+\mathbf{v} \not\in \Lambda, \\ \xi : \Lambda & \ \rightarrow\ {\mathbb K}^*, \\ {\mathbf{u}} &\ \mapsto\ \frac{\delta({\mathbf{u}},\mathbf{v})}{\chi({\mathbf{u}},\mathbf{v})} \quad\text{for any } \mathbf{v} \in {\mathbb Z}^d \backslash \Lambda. \end{align*} $$

We now relate the functions $\delta $ of (1.8) and $\chi , \xi $ of (1.9) to our notation. We have

$$ \begin{align*}\chi({\mathbf{u}},\mathbf{v})=\frac{{\cal W}({\mathbf{u}}+\mathbf{v}+\mathbf{v}')}{{\cal W}(\mathbf{v}+\mathbf{v}')}\frac{{\cal W}(\mathbf{v}')}{{\cal W}({\mathbf{u}}+\mathbf{v}')}= \prod_{r=1}^d {\cal A}_r^{v_r}.\end{align*} $$

So we deduce, for all k in $\{1,2,\ldots ,d\}$ , that $\chi ({\mathbf {u}},\mathbf {e}_k)={\cal A}_k$ , and, in the same way,

$$ \begin{align*}\xi({\mathbf{u}})={\cal C} \quad \mathrm{and} \quad \delta({\mathbf{u}},\mathbf{v})={\cal C} \prod_{r=1}^d {\cal A}_r^{v_r}= \xi({\mathbf{u}}) \chi({\mathbf{u}},\mathbf{v}).\end{align*} $$

Now, we recall the results of [Reference Akbary, Bleaney and Yazdani1, Theorem 1.13, Lemma 4.2] to which we can give an immediate proof.

Theorem 2.5. The functions $\xi $ and $\chi $ have the following properties.

  1. (1) $\chi $ is bilinear symmetric: that is, for all ${\mathbf {u}},{\mathbf {u}}^{(1)},{\mathbf {u}}^{(2)} \in \Lambda $ and $\mathbf {v},\mathbf {v}^{(1)}, \mathbf {v}^{(2)} \in {\mathbb Z}^d$ ,

    1. (a) $\chi ({\mathbf {u}},\mathbf {v}^{(1)}+\mathbf {v}^{(2)})=\chi ({\mathbf {u}},\mathbf {v}^{(1)})\chi ({\mathbf {u}},\mathbf {v}^{(2)})$ ,

    2. (b) $\chi ({\mathbf {u}}^{(1)}+{\mathbf {u}}^{(2)},\mathbf {v})=\chi ({\mathbf {u}}^{(1)},\mathbf {v})\chi ({\mathbf {u}}^{(2)},\mathbf {v})$ ,

    3. (c) $\chi ({\mathbf {u}}^{(1)},{\mathbf {u}}^{(2)})=\chi ({\mathbf {u}}^{(2)},{\mathbf {u}}^{(1)})$ ,

    4. (d) $\chi ({\mathbf {u}},-\mathbf {v})=\chi ({\mathbf {u}},\mathbf {v})^{-1}$ .

  2. (2) $\xi ({\mathbf {u}}^{(1)}+{\mathbf {u}}^{(2)})=\xi ({\mathbf {u}}^{(1)})\xi ({\mathbf {u}}^{(2)})\chi ({\mathbf {u}}^{(1)},{\mathbf {u}}^{(2)})$ .

  3. (3) $\xi (-{\mathbf {u}})=\xi ({\mathbf {u}})$ .

  4. (4) $\xi ({\mathbf {u}})^2=\chi ({\mathbf {u}},{\mathbf {u}})$ .

  5. (5) $\xi (n{\mathbf {u}})=\xi ({\mathbf {u}})^{n^2}$ , for all $n \in {\mathbb Z}$ .

Proof.

  1. (1) (a) is obvious; (b) is obtained from (1.4) with $\mathbf {p}=\mathbf {e}_r$ , $\mathbf {q}=-{\mathbf {u}}^{(2)}$ , $\mathbf {r}=2\mathbf {e}_r$ and $\mathbf {s}={\mathbf {u}}^{(1)}+{\mathbf {u}}^{(2)}$ ; (c) is easily obtained from ${\cal W}({\mathbf {u}}^{(1)}+({\mathbf {u}}^{(2)}+\mathbf {v}))={\cal W}({\mathbf {u}}^{(2)}+({\mathbf {u}}^{(1)}+\mathbf {v}))$ ; and (d) is obvious.

  2. (2) This is easily obtained from ${\cal W}(({\mathbf {u}}^{(1)}+{\mathbf {u}}^{(2)})+\mathbf {v})={\cal W}({\mathbf {u}}^{(1)}+({\mathbf {u}}^{(2)}+\mathbf {v}))$ .

  3. (3) From (1.5) with $\mathbf {p}=2\mathbf {e}_r$ , $\mathbf {q}={\mathbf {u}}$ and $\mathbf {r}=\mathbf {e}_r$ , we deduce that $\chi (-{\mathbf {u}},\mathbf {v})=\chi ({\mathbf {u}},\mathbf {v})^{-1}$ so $\chi (-{\mathbf {u}},-\mathbf {v})=\chi ({\mathbf {u}},\mathbf {v})$ . The result comes from ${\cal W}(-{\mathbf {u}}-\mathbf {v})=-{\cal W}({\mathbf {u}}+\mathbf {v})$ .

  4. (4) This follows from $1=\xi (0)=\xi ({\mathbf {u}}-{\mathbf {u}})=\xi ({\mathbf {u}})\xi (-{\mathbf {u}})\chi ({\mathbf {u}},-{\mathbf {u}})$ .

  5. (5) This result can be deduced from the previous statements.

Example 2.6. Following [Reference Stange, Lauter, Avanzi, Keliher and Sica6, Section 5.1], we consider $Q=k.P$ on an elliptic curve E with P and Q of order m. The elliptic net associated to P and Q cancels at the points ${\mathbf {u}}=(-k,1), \mathbf {s}=(m,0)$ and $\mathbf {t}=(0,m)$ . With obvious notation,

$$ \begin{align*}\chi((-km,m),\mathbf{e}_r)=\chi(m(-k,1),\mathbf{e}_r)=\chi^m((-k,1),\mathbf{e}_r)=({\cal A}^{({\mathbf{u}})}_r)^m\end{align*} $$

and

$$ \begin{align*}\chi((-km,m),\mathbf{e}_r)=\chi^{-k}((m,0),\mathbf{e}_r)\chi((0,m),\mathbf{e}_r)=({\cal A}^{(\mathbf{s})}_r)^{-k}{\cal A}^{(\mathbf{t})}_r.\end{align*} $$

Thus, we easily obtain $({\cal A}^{({\mathbf {u}})}_r)^m=({\cal A}^{(\mathbf {s})}_r)^{-k}{\cal A}^{(\mathbf {t})}_r$ , which is [Reference Stange, Lauter, Avanzi, Keliher and Sica6, Equation (9)].

For the curve $y^2=x^3+x+1$ over ${\mathbb F}_{11}$ , with the points $P_1=(6,5)$ and $P_2=(3,3)$ of order seven, we have the values shown in Table 3.

Table 3 Calculations illustrating Theorem 2.5 for various $u \in \Lambda $ .

2.6. Points of order two or three

We return here to special cases related to the degeneracy conditions of ${\cal W}$ , namely, ${\cal W}(2e_i) \neq 0$ for $1\leq i \leq d$ and ${\cal W}(3e_1) \neq 0$ when $d=1$ . This, therefore, concerns cases where there are points of order two, or order three when $d=1$ , on the elliptic curve E. Note that $|{\mathbb Z}^d/\Lambda |=2$ occurs only in the case $d=1$ when $\mathbf {P}=P$ is of order two. We have $|{\mathbb Z}^d/\Lambda |=3$ if either $d=1$ and $\mathbf {P}=P$ is of order three, or $d=2$ and $\mathbf {P}=(P_1,P_2)$ are two points of order two and ${\mathbf {u}}=(2,2)$ .

For the case $d=1$ with $\mathbf {P}=P$ of order two on E, we have $u=2$ so $i=0$ and $j=2$ , and hence $G_\ell ={\psi _{2+\ell }}/{\psi _\ell }$ with $\ell $ odd. In (1.1) with $m=2\ell +1$ and $n=2$ , we obtain $G_{2\ell + 1}=-\psi _3 G_{2 \ell -1}$ . But we can easily show that, when $y=0$ , we have $\psi _3(x,y)=-( {(2ax+3b)}/{x})^2$ if $x\neq 0$ and $\psi _3(x,y)=-a^2$ if $x=0$ . Hence, in every case, we can write $-\psi _3=q^2$ with q in ${\mathbb K}$ . So, we deduce that $G_{2\ell +1}=q^{2\ell +2}G_{-1}=q^{2\ell +2}$ , and writing $2\ell +1=i+v=v$ for v odd in ${\mathbb Z}$ , since $G_{i+v}={\psi _{u+v}}/{\psi _{-v}}$ , we have $\psi _{u+v}=-q^{v+1}\psi _v$ . Finally, we set ${\cal C}=-q$ and ${\cal A}=q$ , to obtain ${\cal C}^2={\cal A}^u$ and $\psi _{ku+v}={\cal C}^{k^2}{\cal A}^{kv} \psi _v$ . We also find the result of [Reference Dewaghe2, Theorem 1].

For the case $d=1$ with $\mathbf {P}=P$ of order three on E, we proceed in the same way. We have $u=3$ so $i=1$ and $j=2$ , and hence $G_\ell ={\psi _{2+\ell }}/{\psi _{1-\ell }}$ with $\ell \not \equiv 1 \bmod 3$ . In (1.1) with $m=\ell +1$ and $n=2$ , we obtain $G_{\ell + 1}=\psi _2^2 G_{\ell }$ for $\ell \equiv 2 \bmod 3$ . The rest follows in the same way as before with ${\cal C}=-\psi _2^3$ and ${\cal A}=\psi _2^2$ ( ${\cal C}^2={\cal A}^3={\cal A}^u$ ) or $w=\psi _2$ to obtain [Reference Dewaghe2, Theorem 1] when $u=3$ .

For the case $d=2$ , with one or two points of order two, as already mentioned, if $G_{\ell }$ creates a problem, then the $G_{{\ell }'}$ are well defined for ${\ell }'=\ell \pm \mathbf {e}_r$ or $\ell + \mathbf {e}_s$ or $\ell +\mathbf {e}_s \pm \mathbf {e}_r$ with $r\neq s$ in $\{1,2,\ldots d\}$ , and we can then ‘bypass’ the index $\ell $ by setting ${G_\ell =({G_{\ell +\mathbf {e}_s-\mathbf {e}_r}}/{G_{\ell +\mathbf {e}_s}})G_{\ell -\mathbf {e}_r}=q_rG_{\ell -\mathbf {e}_r}}$ . Furthermore, $G_{\ell +\mathbf {e}_r}=q_s^{-1}G_{\ell +\mathbf {e}_r+\mathbf {e}_s}=q_s^{-1}q_r^2G_{\ell -\mathbf {e}_r+\mathbf {e}_s}=q_r^2G_{\ell -\mathbf {e}_r}$ , and hence $G_{\ell +\mathbf {e}_r}=q_rG_{\ell }$ .

For the case $d=3$ , we can have three points of order two but, in this case, ${{\mathbf {u}}=\mathbf {1}}$ , which we have already dealt with. For $d>3$ , we can always make sure that the geometric character of $G_\ell $ subsists with the same ratio through a problematic index with points of order two by ‘bypassing’ in another direction.

Acknowledgement

The author would like to thank the anonymous referee for their comments.

References

Akbary, A., Bleaney, J. and Yazdani, S., ‘On symmetries of elliptic nets and valuations of net polynomials’, J. Number Theory 158 (2016), 185216.CrossRefGoogle Scholar
Dewaghe, L., ‘Périodicité des polynômes de division sur une courbe elliptique’, Math. Res. Lett. 14(6) (2007), 887891.CrossRefGoogle Scholar
Silverman, J. H., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151 (Springer, New York, 1986).CrossRefGoogle Scholar
Stange, K. E., Elliptic Nets and Elliptic Curves, PhD Thesis (Brown University, 2008).Google Scholar
Stange, K. E., ‘Elliptic nets and elliptic curves’, Algebra Number Theory 5(2) (2011), 197229.CrossRefGoogle Scholar
Stange, K. E. and Lauter, K. E., ‘The elliptic curve discrete logarithm problem and equivalent hard problems for elliptic divisibility sequences’, in: Selected Areas in Cryptography, Lecture Notes in Computer Science, 5381 (eds. Avanzi, R. M., Keliher, L. and Sica, F.) (Springer, Berlin, 2009), 309327.Google Scholar
Ward, M., ‘Memoir on elliptic divisibility sequences’, Amer. J. Math. 70 (1948), 3174.CrossRefGoogle Scholar
Washington, L. C., Elliptic Curves: Number Theory and Cryptography, 2nd edn, Discrete Mathematics and its Applications, 50 (CRC Press, Boca Raton, FL, 2008).CrossRefGoogle Scholar
Figure 0

Table 1 Calculations illustrating Theorem 1.4 in characteristic zero.

Figure 1

Table 2 Calculations illustrating Theorem 1.4 in nonzero characteristic.

Figure 2

Table 3 Calculations illustrating Theorem 2.5 for various $u \in \Lambda $.