Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:25:10.015Z Has data issue: false hasContentIssue false

Tall profinite groups

Published online by Cambridge University Press:  17 April 2009

M.F. Hutchinson
Affiliation:
Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classical theorem of Camille Jordan concerning finite linear groups is used to give two structural characterisations of profinite groups which have only finitely many pairwise inequivalent, continuous, irreducible, unitary representations of each degree. Our characterisations of such groups involve properties of their open normal subgroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

[1]Curtis, Charles W., Reiner, Irving, Representation theory of finite groups and associative algebras (Pure and Applied Mathematics, 11. Interscience [John Wiley & Sons], New York, London, Sydney, 1962).Google Scholar
[2]Hewitt, Edwin and Ross, Kenneth A., Abstract harmonic analysis, Volume I (Die Grundlehren der mathematischen Wissenschaften, 115. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).Google Scholar
[3]Hewitt, Edwin, Ross, Kenneth A., Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152). Springer-Verlag, Berlin, Heidelberg, New York, 1970.Google Scholar
[4]Huppert, B., Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[5]Hutchinson, Michael Frank, “Lacunary sets for connected and totally disconnected compact groups” (PhD thesis, University of Sydney, Sydney, 1977). See also: Abstract, Bull. Austral. Math. Soc. 18 (1978), 149151.CrossRefGoogle Scholar
[6]Hutchinson, M.F., “Non-tall compact groups admit infinite Sidon sets”, J. Austral. Math. Soc. Ser. A. 23 (1977), 467475.CrossRefGoogle Scholar
[7]Hutchinson, M.F., “Local A sets for profinite groups”, submitted.Google Scholar
[8]Jordan, Camille, “Mémoire sur les équations différentielles linéaires à intégral algébrique”, J. reine Angew. Math. 84 (1878), 89215.Google Scholar
[9]McMullen, J.F. and Price, J.F., “Rudin-Shapiro sequences for arbitrary compact groups”, J. Austral. Math. Soc. Ser. A 22 (1976), 421430.CrossRefGoogle Scholar
[10].Shatz, Stephen S., Profinite groups, arithmetic, and geometry (Annals of Mathematics Studies, 67. Princeton University Press, Princeton, New Jersey; University of Tokyo Press, Tokyo, 1972).CrossRefGoogle Scholar