Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T11:48:19.739Z Has data issue: false hasContentIssue false

SYMMETRIC FUNCTIONS AND MULTIPLE ZETA VALUES

Published online by Cambridge University Press:  24 July 2019

WENCHANG CHU*
Affiliation:
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou (Henan), P. R. China email [email protected]

Abstract

Four classes of multiple series, which can be considered as multifold counterparts of four classical summation formulae related to the Riemann zeta series, are evaluated in closed form.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Mathematics and Physics, University of Salento, PO Box 193, 73100 Lecce, Italy

References

Borwein, J. M., Bradley, D. M. and Broadhurst, D. J., ‘Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k’, Electron. J. Combin. 4(2) (1997), Article ID R5.Google Scholar
Chu, W., ‘Symmetric functions and the Riemann zeta series’, Indian J. Pure Appl. Math. 31(12) (2000), 16771689.Google Scholar
Comtet, L., Advanced Combinatorics (Dordrecht–Holland, The Netherlands, 1974).Google Scholar
Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete Mathematics (Addison-Wesley Publishing Company, Reading, MA, 1989).Google Scholar
Hoffman, M. E., ‘Multiple harmonic series’, Pacific J. Math. 152 (1992), 275290.Google Scholar
Macdonald, I. G., Symmetric Functions and Hall Polynomials (Oxford University Press, London–New York, 1979).Google Scholar
Merca, M., ‘Asymptotics of the Chebyshev–Stirling numbers of the first kind’, Integral Transforms Spec. Funct. 27(4) (2016), 259267.10.1080/10652469.2015.1117460Google Scholar
Nakamura, T., ‘Bernoulli numbers and multiple zeta values’, Proc. Japan Acad. Ser. A 81(2) (2005), 2122.10.3792/pjaa.81.21Google Scholar
Sloane, N. J. A., The Online Encyclopedia of Integer Sequences, https://oeis.org/.Google Scholar
Stromberg, K. R., An Introduction to Classical Real Analysis (Wadsworth, Belmont, CA, 1981).Google Scholar
Zagier, D., ‘Evaluation of the multiple zeta values 𝜁(2, …, 2, 3, 2, …, 2)’, Ann. of Math. (2) 175 (2012), 9771000.10.4007/annals.2012.175.2.11Google Scholar