No CrossRef data available.
Article contents
SYMMETRIC FUNCTIONS AND MULTIPLE ZETA VALUES
Part of:
Zeta and $L$-functions: analytic theory
Elementary classical functions
Acceleration of convergence
Published online by Cambridge University Press: 24 July 2019
Abstract
Four classes of multiple series, which can be considered as multifold counterparts of four classical summation formulae related to the Riemann zeta series, are evaluated in closed form.
Keywords
MSC classification
Primary:
11M06: $zeta (s)$ and $L(s, chi)$
- Type
- Research Article
- Information
- Copyright
- © 2019 Australian Mathematical Publishing Association Inc.
Footnotes
†
Current address: Department of Mathematics and Physics, University of Salento, PO Box 193, 73100 Lecce, Italy
References
Borwein, J. M., Bradley, D. M. and Broadhurst, D. J., ‘Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k’, Electron. J. Combin. 4(2) (1997), Article ID R5.Google Scholar
Chu, W., ‘Symmetric functions and the Riemann zeta series’, Indian J. Pure Appl. Math. 31(12) (2000), 1677–1689.Google Scholar
Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete Mathematics (Addison-Wesley Publishing Company, Reading, MA, 1989).Google Scholar
Macdonald, I. G., Symmetric Functions and Hall Polynomials (Oxford University Press, London–New York, 1979).Google Scholar
Merca, M., ‘Asymptotics of the Chebyshev–Stirling numbers of the first kind’, Integral Transforms Spec. Funct. 27(4) (2016), 259–267.10.1080/10652469.2015.1117460Google Scholar
Nakamura, T., ‘Bernoulli numbers and multiple zeta values’, Proc. Japan Acad. Ser. A 81(2) (2005), 21–22.10.3792/pjaa.81.21Google Scholar
Stromberg, K. R., An Introduction to Classical Real Analysis (Wadsworth, Belmont, CA, 1981).Google Scholar
Zagier, D., ‘Evaluation of the multiple zeta values 𝜁(2, …, 2, 3, 2, …, 2)’, Ann. of Math. (2) 175 (2012), 977–1000.10.4007/annals.2012.175.2.11Google Scholar