Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T20:40:28.849Z Has data issue: false hasContentIssue false

Symbolic computation and perfect fluids in general relativity

Published online by Cambridge University Press:  17 April 2009

Sasha Cyganowski
Affiliation:
School of Computing and Mathematics, Deakin University, Warun Ponds Vic 3217, Australia, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. Theses
Copyright
Copyright © Australian Mathematical Society 2000

References

REFERENCES

[1]Carminati, J., ‘Shear-free perfect fluids in general relativity, I. Petrov type N Weyl tensor’, J. Math. Phys. 28 (1987), 18481853.CrossRefGoogle Scholar
[2]Carminati, J. and Cyganowski, S.O., ‘Shear-free perfect fluids in general relativity: III. Petrov type III spacetimes’, Classical Quantum Gravity 13 (1996), 18051817.CrossRefGoogle Scholar
[3]Carminati, J. and Cyganowski, S.O., ‘Shear-free perfect fludis in general relativity: IV. Petrov type III spacetimes’, Classical Quantum Gravity 14 (1997), 11671181.CrossRefGoogle Scholar
[4]Collins, C.B., ‘Shear-free perfect fluids with zero magnetic Weyl tensor’, J. Math. Phys. 25 (1984), 9951000.CrossRefGoogle Scholar
[5]Cyganowski, S.O. and Carminati, J., ‘The Maple package NPTOOLS; a symbolic algebra package for tetrad formalisms in general relativity’, Comput. Phys. Comm. 115 (1998), 200214.CrossRefGoogle Scholar
[6]Cyganowski, S.O. and Carminati, J., ‘Shear-free perfect fludis in general relativity: Gravito-magnetic spacetimes’, Gen. Relativity Gravitation (to appear).Google Scholar
[7]Ellis, G.F.R., ‘Dynamics of pressure-free matter in general relativity’, J. Math. Phys. 8 (1967), 11711194.CrossRefGoogle Scholar
[8]Newman, E.T. and Penrose, R., ‘An approach to gravitational radiation by a method of spin coefficients’, J. Math. Phys. 3 (1962), 566578.CrossRefGoogle Scholar
[9]Senovilla, J.M.M., Sopuerta, C.F. and Szekeres, P., ‘Theorems on shear-free perfect fludis with their Newtonian analogues’, Gen. Relativity Gravitation 30 (1998), 389.CrossRefGoogle Scholar
[10]Treciokas, R., Relativistic kinetic theory, Ph.D. Thesis (Cambridge University, 1972).Google Scholar