We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Back, J. M., McCue, S. W., Hsieh, M.-N. and Moroney, T. J., ‘The effect of surface tension and kinetic undercooling on a radially-symmetric melting problem’, Appl. Math. Comput.229 (2014), 41–52.Google Scholar
[2]
Back, J. M., McCue, S. W. and Moroney, T. J., ‘Numerical study of two ill-posed one phase Stefan problems’, ANZIAM J.52 (2011), C430–C446.CrossRefGoogle Scholar
[3]
Back, J. M., McCue, S. W. and Moroney, T. J., ‘Including nonequilibrium interface kinetics in a continuum model for melting nano scaled particles’, Sci. Rep.4 (2014), 7066.CrossRefGoogle Scholar
[4]
Dallaston, M. C. and McCue, S. W., ‘Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization’, Nonlinearity26 (2013), 1639–1665.CrossRefGoogle Scholar
[5]
Font, F. and Myers, T. G., ‘Spherically symmetric nanoparticle melting with a variable phase change temperature’, J. Nanopart. Res.15 (2013), 2086.CrossRefGoogle Scholar
[6]
Font, F., Myers, T. G. and Mitchell, S. L., ‘A mathematical model for nanoparticle melting with density change’, Microfluid. Nanofluid.18 (2015), 233–243.CrossRefGoogle Scholar
[7]
King, J. R. and Evans, J. D., ‘Regularization by kinetic undercooling of blow-up in the ill-posed Stefan problem’, SIAM J. Appl. Math.65 (2005), 1677–1707.CrossRefGoogle Scholar
[8]
Langer, J. S., Lectures in the Theory of Pattern Formation. Chance and Matter (Elsevier, Amsterdam, 1987).Google Scholar
[9]
McCue, S. W., Hsieh, M., Moroney, T. J. and Nelson, M. I., ‘Asymptotic and numerical results for a model of solvent-dependent drug diffusion through polymeric spheres’, SIAM J. Appl. Math.71 (2011), 2287–2311.CrossRefGoogle Scholar
[10]
McCue, S. W., Wu, B. and Hill, J. M., ‘Micro/nanoparticle melting with spherical symmetry and surface tension’, IMA J. Appl. Math.74 (2009), 439–457.CrossRefGoogle Scholar
[11]
Meirmanov, A. M., ‘The Stefan problem with surface tension in the three dimensional case with spherical symmetry: nonexistence of the classical solution’, European J. Appl. Math.5 (1994), 1–19.CrossRefGoogle Scholar
[12]
Mitchell, S. L. and O’Brien, S. B. G., ‘Asymptotic, numerical and approximate techniques for a free boundary problem arising in the diffusion of glassy polymers’, Appl. Math. Comput.219 (2012), 376–388.Google Scholar
[13]
Wu, B., McCue, S. W., Tillman, P. and Hill, J. M., ‘Single phase limit for melting nanoparticles’, Appl. Math. Model.33 (2009), 2349–2367.CrossRefGoogle Scholar
[14]
Wu, B., Tillman, P., McCue, S. W. and Hill, J. M., ‘Nanoparticle melting as a Stefan moving boundary problem’, J. Nanosci. Nanotech.9 (2009), 885–888.CrossRefGoogle ScholarPubMed