Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T06:06:13.507Z Has data issue: false hasContentIssue false

Some results on coincidence points

Published online by Cambridge University Press:  17 April 2009

Abdul Latif
Affiliation:
Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan
Ian Tweddle
Affiliation:
Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, Scotland, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove some coincidence point theorems for nonself single-valued and multivalued maps satisfying a nonexpansive condition. These extend fixed point theorems for multivalued maps of a number of authors.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Assad, N.A. and Kirk, W.A., ‘Fixed point theorems for set-valued mappings of contractive type’, Pacific J. Math. 43 (1972), 553562.CrossRefGoogle Scholar
[2]Daffer, P.Z. and Kaneko, H., ‘Multivalued f-contractive mappings’, Boll. Un. Mat. Ital. 7 (1994), 233241.Google Scholar
[3]Downing, D. and Kirk, W.A., ‘Fixed point theorems for set-valued mappings in metric and Banach spaces’, Math. Japon. 22 (1977), 99112.Google Scholar
[4]Goebel, K., ‘On fixed point theorem for multivalued nonexpansive mappings’, Ann. Univ. Marie Curie-Sklodowska 29 (1975), 6972.Google Scholar
[5]Husain, T. and Latif, A., ‘Fixed points of multivalued nonexpansive maps’, Internat. J. Math. Math. Sci. 1 (1991), 421430.CrossRefGoogle Scholar
[6]Itoh, S. and Takahashi, W., ‘Single-valued mappings, multivalued mappings and fixed point theorems’, J. Math. Anal. Appl. 59 (1977), 514521.CrossRefGoogle Scholar
[7]Jungck, G., ‘Commuting mappings and fixed points’, Amer. Math. Monthly 83 (1976), 261263.CrossRefGoogle Scholar
[8]Kaneko, H., ‘Single-valued and multivalued f-contractions’, Boll. Un. Mat. Ital. 6 (1985), 2933.Google Scholar
[9]Dozo, E. Lami, ‘Multivalued nonexpansive mappings and Opial's condition’, Proc. Amer. Math. Soc. 38 (1973), 286292.CrossRefGoogle Scholar
[10]Latif, A. and Tweddle, I., ‘On multivalued f-nonexpansive maps’, (submitted).Google Scholar
[11]Lim, T.C., ‘A fixed point theorem for multivalued nonexpansive mapping in a uniformly convex Banach space’, Bull. Amer. Math. Soc. 80 (1974), 11231126.CrossRefGoogle Scholar
[12]Markin, J.T., ‘A fixed point theorem for set-valued mappings’, Bull. Amer. Math. Soc. 74 (1968), 639640.CrossRefGoogle Scholar
[13]Massa, S., ‘Some remarks on Opial spaces’, Boll. Un. Mat. Ital. 6 (1983), 6569.Google Scholar
[14]Martinez-Yanez, C., ‘A remark on weakly inward contractions’, Nonlinear Anal. 16 (1991), 847848.CrossRefGoogle Scholar
[15]Nadler, S.B., ‘Multivalued contraction mappings’, Pacific J. Math. 30 (1969), 475488.CrossRefGoogle Scholar
[16]Opial, Z., ‘Weak convergence of the sequence of successive approximations for nonexpansive mappings’, Bull. Amer. Math. Soc. 73 (1967), 591597.CrossRefGoogle Scholar
[17]Reich, S., ‘Fixed points of contractive functions’, Boll. Un. Mat. Ital. 4 (1972), 2642.Google Scholar
[18]Reich, S., ‘Approximate selection, best approximation, fixed points and invariant sets’, J. Math. Anal. Appl. 62 (1978), 104113.CrossRefGoogle Scholar
[19]Smithson, R.E., ‘Fixed points for contractive multifunctions’, Proc. Amer. Math. Soc. 27 (1971), 192194.CrossRefGoogle Scholar
[20]Yanagi, K., ‘On some fixed point theorems for multivalued mappings’, Pacific J. Math. 87 (1980), 233240.CrossRefGoogle Scholar
[21]Yi, H-W. and Zhao, Y-C., ‘Fixed point theorems for weakly inward multivalued mappings and their randomizations’, J. Math. Anal. Appl. 183 (1994), 613619.CrossRefGoogle Scholar
[22]Zhang, S., ‘Star-shaped sets and fixed points of multivalued mappings’, Math. Japon. 36 (1991), 327334.Google Scholar