Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T21:23:30.841Z Has data issue: false hasContentIssue false

Rigid sets

Published online by Cambridge University Press:  17 April 2009

Luca Guerrini
Affiliation:
Università di Bologna, Dipartimento di Matematica per le Scienze Economiche e Sociali, Viale Filopanti 5, 40126 Bologna, Italy e-mail: [email protected]
Pier Luigi Papini
Affiliation:
Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40126 Bologna, Italy e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term “rigid set” appears often in the literature in different contexts and with different meanings. In many cases the notions are unrelated, while in other they refer to related facts. Here we study infinite sets which are rigid according to [2] and analyse the relationship with the notion of rigidity used in [1]. We make several remarks, summarise different results in the area and prove a few new results.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Aaronson, J., Glasner, E. and Misiurewicz, M., ‘Rigid sets in the plane’, Israel J. Math. 68 (1989), 307326.CrossRefGoogle Scholar
[2]Akcoglu, M.A. and Krengel, U., ‘Nonlinear models of diffusion on a finite space’, Probab. Theory Related Fields 76 (1987), 411420.CrossRefGoogle Scholar
[3]Sánchez, F. Cabello, ‘Regards sur le problème des rotations de Mazur’, Extracta Math. 12 (1997), 97116.Google Scholar
[4]Davis, W.J., ‘A characterization of 1 spaces’, J. Approx. Theory 21 (1977), 315318.CrossRefGoogle Scholar
[5]Delbaen, F., Jarchow, H. and Pelczynski, A., ‘Subspaces of Lp isometric to subspaces of lp’, Positivity 2 (1998), 339367.CrossRefGoogle Scholar
[6]Dilena, G., Messano, B. and Roux, D., ‘Rigid sets and nonexpansive mappings’, Proc. Amer. Math. Soc. 125 (1997), 35753580.CrossRefGoogle Scholar
[7]Edelstein, M., ‘Basic properties of nonexpansive mappings’, C. R. Math. Rep. Acad. Sci. Canada 4 (1982), 111116.Google Scholar
[8]Franchetti, C., ‘Relationship between the Jung constant and a certain projection constant in Banach spaces’, Ann. Univ. Ferrara Sez. VII 23 (1977), 3944.CrossRefGoogle Scholar
[9]Goebel, K. and Schöneberg, R., ‘Moons, bridges, birds …and nonexpansive mappings in Hilbert space’, Bull. Austral. Math. Soc. 17 (1977), 463466.Google Scholar
[10]Herburt, I. and Ungar, Š., ‘Rigid sets of dimension n − 1 in ℝn’, Geom. Dedicata 76 (1999), 331339.CrossRefGoogle Scholar
[11]Lyons, R.N. and Nussbaum, R.D., ‘On transitive and commutative finite groups of isometries’, in Fixed point theory and applications, (Tan, K.-K., Editor) (World Sci. Publishing, River Edge, N.J., 1992), pp. 189228.Google Scholar
[12]Ma, Y.M., ‘Isometries of the unit sphere’, Acta Math. Sci. 12 (1992), 366373.Google Scholar
[13]Misiurewicz, M., ‘Rigid sets in finite dimensional l 1-spaces’, (Sonderforschungsbereichs Geom. Anal. 45), Math. Gottingensis, Schriftenr. (1987).Google Scholar
[14]Nhu, N.T. and Sisson, P., ‘A rigid space homeomorphic to Hilbert space’, Proc. Amer. Math. Soc. 126 (1998), 8595.CrossRefGoogle Scholar
[15]Nussbaum, R.D., ‘Omega limit sets of nonexpansive maps: finiteness and cardinality estimates’, Differential Inttegral Equations 3 (1990), 523540.Google Scholar
[16]Smart, D.R., Fixed point theory (Cambridge Univ. Press, Cambridge, 1973).Google Scholar
[17]Terenzi, P., ‘Equilater sets in Banach spaces’, Boll. Un. Mat. Ital. A 3 (1989), 119124.Google Scholar
[18]Tingley, D., ‘Isometries of the unit sphere’, Geom. Dedicata 22 (1987), 371378.CrossRefGoogle Scholar
[19]Wang, R., ‘Isometries on the lp-sum of C 0(Ω, E) type spaces’, J. Math. Sci. Univ. Tokyo 3 (1986), 471493.Google Scholar
[20]Weller, D., Hilbert's metric, part metric and self-mappings of a cone, (Ph.D. Dissertation) (Univ. of Bremen, Germany, 1987).Google Scholar
[21]Wright, D.G., ‘Rigid sets in manifolds’, in Geometric and Algebraic Topology, (Torunczyk, H., Spielz, S., Editors), Banach Center Publ. 18 (PWN, Warsaw, 1986), pp. 161164.Google Scholar
[22]Yost, D., ‘L 1 contains every two-dimensional normed space’, Ann. Polon. Math. 49 (1988), 1719.Google Scholar