Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:49:40.139Z Has data issue: false hasContentIssue false

Restriction of Siegel modular forms to modular curves

Published online by Cambridge University Press:  17 April 2009

Cris Poor
Affiliation:
Department of Mathematics, Fordham University, Bronx, NY 10458, e-mail: [email protected]
David S. Yuen
Affiliation:
Math/CS Department, Lake Forest College, 555 N. Sheridan Rd., Lake Forest, IL 60045, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study homomorphisms form the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that dim .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Brinkman, B. and Gerritzen, L., ‘The lowest term of the Schottky modular form’, Math. Annalen 292 (1992), 329335.CrossRefGoogle Scholar
[2]Christian, U., Selberg's Zeta-, L-, and Eisenstein series, Lecture Notes in Math. 1030 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).CrossRefGoogle Scholar
[3]Duke, W. and Imamoḡlu, Ö., ‘Siegel modular forms of small weight’, Math. Ann. 308 (1997), 525534.Google Scholar
[4]Eichler, M., ‘Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht’, Math. Ann. 213 (1975), 281291.CrossRefGoogle Scholar
[5]Eichler, M., ‘Erratum: über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht’, Math. Ann. 215 (1975), 195.CrossRefGoogle Scholar
[6]Erokhin, V. A., ‘Theta series of even unimodular 24-dimensional lattices’, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 86 (1979), 8293.Google Scholar
[7]Erokhin, V.A., ‘Theta series of even unimodular lattices’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 112 (1981), 5970.Google Scholar
[8]Freitag, E., Siegelsche Modulfunktionen, Grundlehren der mathematische Wissenschaften 254 (Springer Verlag, Berlin, 1983).CrossRefGoogle Scholar
[9]Igusa, J.I., ‘Schottky's invariant and quadratic forms’, in Christoffel Symposium (Birkhäuser Verlag, Basel, Boston, MA, 1981), pp. 352362.CrossRefGoogle Scholar
[10]Nipp, G., Quaternary quadratic forms, computer generated tables (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
[11]Poor, C. and Yuen, D., ‘Dimensions of spaces of Siegel modular forms of low weight in degree four’, Bull Austral. Math. Soc. 54 (1996), 309315.CrossRefGoogle Scholar
[12]Poor, C. and Yuen, D., ‘Dimensions of spaces of Siegel cusp forms and theta series with pluri-harmonicsFar East J. Math. Sci. (FJMS) 1 (1999), 849863.Google Scholar
[13]Poor, C. and Yuen, D., ‘Linear dependence among Siegel Modular Forms’, Math. Ann. 318 (2000), 205234.Google Scholar
[14]Manni, R. Salvati, ‘Modular forms of the fourth degree (Remark on a paper of Harris and Morrison)’, in Classification of irregular varieties, (Ballico, , Catanese, , Ciliberto, , Editors), Lecture Notes in Math. 1515 (Springer, Berlin, 1992), pp. 106111.CrossRefGoogle Scholar