Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T23:38:58.186Z Has data issue: false hasContentIssue false

REFINED MOTIVIC DIMENSION OF SOME FERMAT VARIETIES

Published online by Cambridge University Press:  25 November 2015

SU-JEONG KANG*
Affiliation:
Department of Mathematics and Computer Science, Providence College, Providence, RI 02918, USA email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the inductive structure of a Fermat variety by Shioda and Katsura [‘On Fermat varieties’, Tohoku Math. J. (2) 31(1) (1979), 97–115], we estimate the refined motivic dimension of certain Fermat varieties. As an application of our computation, we present an elementary proof of the generalised Hodge conjecture for those varieties.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Arapura, D., ‘Varieties with very little transcendental cohomology’, in: Motives and Algebraic Cycles, Fields Institute Communications, 56 (American Mathematical Society, Providence, RI, 2009), 114.Google Scholar
Deligne, P., ‘Théorie de Hodge. II, III’, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 557; 44 (1974), 6–77.CrossRefGoogle Scholar
Deligne, P. and Katz, N. (eds.), ‘Groupes de monodromie en géométrie algébrique. II’, in: Séminaire de Géométrie Algébrique du Bois–Marie 1967–1969 (SGA 7 II), Lecture Notes in Mathematics, 340 (Springer, Berlin–New York, 1973), x+438.Google Scholar
Grothendieck, A., ‘Hodge’s general conjecture is false for trivial reasons’, Topology 8 (1969), 299303.Google Scholar
Kang, S.-J., ‘Refined motivic dimension’, Canad. Math. Bull. 58(3) (2015), 519529.CrossRefGoogle Scholar
Lewis, J., A Survey of the Hodge Conjecture, CRM Monograph Series, 10 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Ran, Z., ‘Cycles on Fermat hypersurfaces’, Compositio Math. 42(1) (1980/81), 121142.Google Scholar
Shioda, T., ‘The Hodge conjecture for Fermat varieties’, Math. Ann. 245(2) (1979), 175184.CrossRefGoogle Scholar
Shioda, T. and Katsura, T., ‘On Fermat varieties’, Tohoku Math. J. (2) 31(1) (1979), 97115.CrossRefGoogle Scholar
Steenbrink, J. H. M., ‘Some remarks about the Hodge conjecture’, in: Hodge Theory (Sant Cugat, 1985), Lecture Notes in Mathematics, 1246 (Springer, Berlin, 1987), 165175.CrossRefGoogle Scholar