Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T20:56:11.781Z Has data issue: false hasContentIssue false

QUASI RIESZ TRANSFORMS, HARDY SPACES AND GENERALISED SUB-GAUSSIAN HEAT KERNEL ESTIMATES

Published online by Cambridge University Press:  10 August 2015

LI CHEN*
Affiliation:
Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas,C/Nicolás Cabrera13–15, E-28049 Madrid, Spain email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Auscher, P., Coulhon, T., Duong, X. T. and Hofmann, S., ‘Riesz transform on manifolds and heat kernel regularity’, Ann. Sci. Éc. Norm. Supér. (4) 37(6) (2004), 911957.CrossRefGoogle Scholar
Auscher, P., McIntosh, A. and Russ, E., ‘Hardy spaces of differential forms on Riemannian manifolds’, J. Geom. Anal. 18(1) (2008), 192248.CrossRefGoogle Scholar
Barlow, M., Coulhon, T. and Grigor’yan, A., ‘Brownian motion and harmonic analysis on Sierpinski carpets’, Invent. Math. 144(3) (2001), 609649.CrossRefGoogle Scholar
Coifman, R. and Weiss, G., ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. 83(4) (1977), 569645.CrossRefGoogle Scholar
Coulhon, T. and Duong, X. T., ‘Riesz transforms for 1 ≤ p ≤ 2’, Trans. Amer. Math. Soc. 351(3) (1999), 11511169.CrossRefGoogle Scholar
Coulhon, T. and Duong, X. T., ‘Riesz transform and related inequalities on noncompact Riemannian manifolds’, Comm. Pure Appl. Math. 56(12) (2003), 17281751.CrossRefGoogle Scholar
Fefferman, C. and Stein, E. M., ‘H p spaces of several variables’, Acta Math. 129(3–4) (1972), 137193.CrossRefGoogle Scholar
Hofmann, S., Lu, G., Mitrea, D., Mitrea, M. and Yan, L., ‘Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates’, Mem. Amer. Math. Soc. 214(1007) (2011), vi+78.Google Scholar
Strichartz, R. S., ‘Analysis of the Laplacian on the complete Riemannian manifold’, J. Funct. Anal. 52(1) (1983), 4879.CrossRefGoogle Scholar