Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T00:00:00.088Z Has data issue: false hasContentIssue false

PRIMITIVE IDEAL SPACE OF $C^*(R_+)\rtimes R^\times $

Published online by Cambridge University Press:  26 December 2024

XIAOHUI CHEN
Affiliation:
Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, PR China e-mail: [email protected]
HUI LI*
Affiliation:
Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, PR China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

For an integral domain R satisfying certain conditions, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times $. We illustrate the result by the example $R=\mathbb {Z}[\sqrt {-3}]$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Motivated by the pioneering paper of Bost and Connes [Reference Bost and Connes2], Cuntz in [Reference Cuntz, Cortiñas, Cuntz, Karoubi, Nest and Weibel8] constructed the first ring $C^*$ -algebra. Cuntz and Li [Reference Cuntz, Li, Blanchard, Ellwood, Khalkhali, Marcolli, Moscovici and Popa11] generalised the work of [Reference Cuntz, Cortiñas, Cuntz, Karoubi, Nest and Weibel8] to an integral domain with finite quotients. Eventually, Li [Reference Li18] generalised the work of [Reference Cuntz, Cortiñas, Cuntz, Karoubi, Nest and Weibel8] to arbitrary rings. There is more than one way of studying $C^*$ -algebras associated to rings. Hirshberg [Reference Hirshberg12], Larsen and Li [Reference Larsen and Li17], and Kaliszewski et al. [Reference Kaliszewski, Omland and Quigg13] independently investigated $C^*$ -algebras from p-adic rings. Li [Reference Li19] defined the notion of semigroup $C^*$ -algebras and proved that the $ax+b$ -semigroup $C^*$ -algebra of a ring is an extension of the ring $C^*$ -algebra. When the ring is the ring of integers of a field, Li [Reference Li19] proved that the $ax+b$ -semigroup $C^*$ -algebra is isomorphic to another construction due to Cuntz et al. [Reference Cuntz, Deninger and Laca9]. Very recent work due to Bruce and Li [Reference Bruce and Li5, Reference Bruce and Li6] and Bruce et al. [Reference Bruce, Kubota and Takeishi4] on algebraic dynamical systems and their associated $C^*$ -algebras solves quite a few open problems.

For an integral domain R, denote by $R_+$ the additive group $(R,+)$ and by $R^\times $ the multiplicative semigroup $(R\setminus \{0\},\cdot )$ . There is a natural unital and injective action of $R^\times $ on $C^*(R_+)$ by multiplication. Thus, we obtain a semigroup crossed product $C^*(R_+) \rtimes R^\times $ . We characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times $ under certain conditions. Our main example is $R=\mathbb {Z}[\sqrt {-3}]$ . The semigroup crossed product $C^*(R_+) \rtimes R^\times $ is closely related to other constructions. In the Appendix, we show that $C^*(R_+) \rtimes R^\times $ is an extension of the boundary quotient of the opposite semigroup of the $ax+b$ -semigroup of the ring and that when the ring is a greatest common divisor (GCD) domain, $C^*(R_+) \rtimes R^\times $ is isomorphic to the boundary quotient of the opposite semigroup of the $ax+b$ -semigroup of the ring. There are only a few investigations of the opposite semigroup $C^*$ -algebra of the $ax+b$ -semigroup of a ring (see for example [Reference Cuntz, Echterhoff and Li10, Reference Li20, Reference Li and Norling21]).

Standing assumptions

Throughout the paper, any semigroup is assumed to be discrete, countable, unital and left cancellative; any group is assumed to be discrete and countable; any subsemigroup of a semigroup is assumed to inherit the unit of the semigroup; any ring is assumed to be countable and unital with $0 \neq 1$ ; and any topological space is assumed to be second countable.

2 Laca’s dilation theorem revisited

Laca [Reference Laca14] proved an important theorem which dilates a semigroup dynamical system $(A,P,\alpha )$ to a $C^*$ -dynamical system $(B,G,\beta )$ so that the semigroup crossed product $A \rtimes _{\alpha }^{e} P$ is Morita equivalent to the crossed product $B \rtimes _{\beta } G$ . In this section, we revisit Laca’s theorem when A is a unital commutative $C^*$ -algebra.

Notation 2.1. Let P be a subsemigroup of a group G satisfying $G=P^{-1}P$ . For ${p,q \in P}$ , define $p \leq q$ if $qp^{-1} \in P$ . Then, $\leq $ is a reflexive, transitive and directed relation on P.

Theorem 2.2 (See [Reference Laca14, Theorem 2.1])

Let P be a subsemigroup of a group G satisfying $G=P^{-1}P$ , let $A=C(X)$ , where X is a compact Hausdorff space, and let $\alpha :P \to \mathrm {End}(A)$ be a semigroup homomorphism such that $\alpha _p$ is unital and injective for all $p \in P$ . Then, there exists a dynamical system $(X_\infty ,G,\gamma )$ (where $X_\infty $ is compact Hausdorff) such that $A \rtimes _{\alpha }^{e} P$ is Morita equivalent to $C(X_\infty ) \rtimes _\gamma G$ .

Proof. By [Reference Laca14, Theorem 2.1], there exists a $C^*$ -dynamical system $(A_\infty ,G,\beta )$ such that $A \rtimes _{\alpha }^{e} P$ is Morita equivalent to $A_\infty \rtimes _\beta G$ . We cite the proof of [Reference Laca14, Theorem 2.1] to sketch the construction of $A_\infty $ and the definition of $\beta $ .

For $p \in P$ , define $A_p:=A$ . For $p,q \in P$ with $p \leq q$ , define $\alpha _{p,q}:A_p \to A_q$ to be $\alpha _{qp^{-1}}$ . Then, $\{(A_p,\alpha _{p,q}):p,q \in P,p \leq q\}$ is an inductive system. Let ${A_\infty :=\lim _{p}(A_p,\alpha _{p,q})}$ , let $\alpha ^{p}:A_p \to A_\infty $ be the natural unital embedding for all $p \in P$ and let $\beta :G \to \mathrm {Aut}(A_\infty )$ be the homomorphism satisfying $\beta _{p_0}\circ \alpha ^{pp_0}=\alpha ^p$ for all $p_0,p\in P$ .

For $p \in P$ , denote by $f_p:X \to X$ the unique surjective continuous map induced from $\alpha _p$ and set $X_p:=X$ . For $p,q \in P$ with $p \leq q$ , denote by $f_{q,p}:X_q \to X_p$ the unique surjective continuous map induced from $\alpha _{p,q}$ . Since $\alpha _{p,q}=\alpha _{qp^{-1}}$ , we have ${f_{q,p}=f_{qp^{-1}}}$ . Then, $\{(X_p,f_{q,p}):p,q \in P,p \leq q\}$ is an inverse system. Set

(2.1) $$ \begin{align} X_\infty :=\bigg\{(x_p)_{p \in P} \in \prod _{p \in P}X_p:f_{q,p}(x_q)=x_p\mbox { for all } p \leq q\bigg\}, \end{align} $$

which is the inverse limit of the inverse system. By [Reference Blackadar1, Example II.8.2.2(i)], ${A_\infty \cong C(X_\infty )}$ . For $p \in P$ , denote by $f^p:X_\infty \to X_p$ the unique projection induced from $\alpha ^p$ . Then, $f_{q,p}\circ f^q=f^p$ for all $p,q \in P,p \leq q$ . For  $p,p_0 \in P,f \in C(X_\infty )$ , denote by $\gamma _{p_0}:X_\infty \to X_\infty $ the unique homeomorphism such that $\beta _{p_0}(f)=f\circ \gamma _{p_0}^{-1}$ .

From this construction, $(X_\infty ,G,\gamma )$ is a dynamical system with $C(X_\infty ) \rtimes _\gamma G \cong A_\infty \rtimes _\beta G$ . Hence, $A \rtimes _{\alpha }^{e} P$ is Morita equivalent to $C(X_\infty ) \rtimes _\gamma G$ .

Notation 2.3. We give an explicit description of $X_\infty $ and the action of G on $X_\infty $ given in Theorem 2.2. We start with the definition of $X_\infty$ in (2.1). Then, for $p_0,p,q \in P$ with $q \geq p_0,p$ , and for $(x_p)_{p \in P} \in X_\infty $ , we have

$$ \begin{align*}(p_0\cdot (x_p))(p)=x_{pp_0},\quad (p_0^{-1}\cdot (x_p))(p)=f_{q,p}(x_{qp_0^{-1}}).\end{align*} $$

In particular, when G is abelian, we have a simpler form of the group action given by

$$ \begin{align*}\frac{p_0}{q_0} \cdot (x_p)=(f_{q_0}(x_{pp_0})).\end{align*} $$

Our goal is to apply Theorem 2.2 to characterise the primitive ideal space of the semigroup crossed product $C^{*}(R_+)\rtimes R^{\times }$ of an integral domain. Since $R^{\times }$ is abelian, we will need the following version of Williams’ theorem.

Definition 2.4. Let G be an abelian group, let X be a locally compact Hausdorff space and let $\alpha :G \to \mathrm {Homeo}(X)$ be a homomorphism. For $x,y\in X$ , define $x \sim y$ if $\overline {G\cdot x} =\overline {G \cdot y}$ . Then, $\sim $ is an equivalence relation on X. For $x \in X$ , define $[x] := \overline {G\cdot x}$ , called the quasi-orbit of x. The quotient space $Q(X /G)$ by the relation $\sim $ is called the quasi-orbit space. For $x \in X$ , define $G_{x}:=\{ g \in G : g \cdot x = x\}$ , called the isotropy group (or stability group) at x. For $([x],\phi ), ([y],\psi ) \in Q(X/ G)\times \widehat {G}$ , define $([x],\phi )\approx ([y],\psi )$ if $[x] = [y]$ and $\phi \vert _{G_{x}}= \psi \vert _{G_{x}}$ . Then, $\approx $ is an equivalence relation on $Q(X /G) \times \widehat {G}$ .

Theorem 2.5 [Reference Laca and Raeburn16, Theorem 1.1]

Let G be an abelian group, let X be a locally compact Hausdorff space and let $\alpha : G \to \mathrm {Homeo}(X)$ be a homomorphism. Then, ${\mathrm {Prim}(C_{0}(X)\rtimes _\alpha G)\cong (Q(X /G)\times \widehat {G})/\approx} $ .

3 Primitive ideal structure of $C^*(R_+)\rtimes R^\times $

In this section, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product $C^*(R_+) \rtimes R^\times $ under certain conditions.

Notation 3.1. Let R be an integral domain. Denote by Q the field of fractions of R, by $R_+$ the additive group $(R,+)$ , by $\widehat {R_+}$ the dual group of $R_+$ , by $R^\times $ the multiplicative semigroup $(R\setminus \{0\},\cdot )$ , by $Q^\times $ the enveloping group $(Q\setminus \{0\},\cdot )$ of $R^\times $ , by $\{u_r\}_{r \in R_+}$ the family of unitaries generating $C^*(R_+)$ and by $\alpha :R^\times \to \mathrm {End}(C^*(R_+))$ the homomorphism such that $\alpha _{p}(u_r)=u_{pr}$ for all $p \in R^\times ,r \in R_+$ . Observe that for any $p \in R^\times , \alpha _p$ is unital and injective, and the map $f_p:\widehat {R_+} \to \widehat {R_+},\phi \mapsto \phi (p \cdot )$ is the unique surjective continuous map induced from $\alpha _p$ . Denote by

$$ \begin{align*}X_\infty(R):=\bigg\{\phi=(\phi_p)_{p\in R^\times}\in\prod_{p\in R^\times}\widehat{R_+}:\phi_q\bigg(\frac{q}{p}\cdot \bigg)=\phi_p,\text{ whenever } p \mid q\bigg\}.\end{align*} $$

Then, $({p_0}/{q_0})\cdot (\phi _p)=(\phi _{pp_0}(q_0\cdot ))$ .

Lemma 3.2. Let R be an integral domain. Fix $(\phi _p)_{p\in R^\times } \in X_\infty (R)$ . If $(\phi _p)_{p\in R^\times }\neq (1)_{p \in R^\times }$ , then $Q^{\times }_{\phi }=\{1_R\}$ . If $(\phi _p)_{p\in R^\times }= (1)_{p\in R^\times }$ , then $Q^{\times }_{\phi }=Q^{\times }$ .

Proof. To prove the first statement, suppose for a contradiction that there exists $p_0/q_0 \in Q^\times$ with $p_0/q_0 \ne 1$ and such that $({p_0}/{q_0}) \cdot \phi =\phi $ . Since $(\phi _p)_{p\in R^\times }\neq (1)_{p \in R^\times }$ , there exists ${p_1 \in R^\times }$ such that $\phi _{p_1} \neq 1$ . Then, $\phi _p=\phi _{pp_0}(q_0 \cdot )$ for any $p \in R^{\times }$ . Since $\phi _{pp_0}(p_0\cdot )=\phi _p$ for any $p \in R^\times $ , we deduce that $\phi _{pp_0}(p_0\cdot )=\phi _{pp_0}(q_0 \cdot )$ for all $p \in R^\times $ . So ${\phi _{pp_0}((p_0-q_0)\cdot )= 1}$ for any $p \in R^\times $ . Hence, $\phi _{pp_0}((p_0-q_0)p_0\cdot )= 1$ for any ${p \in R^\times }$ . When $p=p_1(p_0-q_0)$ , we get $\phi _{p_1}=\phi _{p_1(p_0-q_0)p_0}(((p_0-q_0)p_0\cdot )= 1$ , which is a contradiction. Therefore, ${Q^{\times }_{\phi }=\{1_R\}}$ .

To prove the second statement, suppose that $(\phi _p)_{p\in R^\times }= (1)_{p\in R^\times }$ . For ${{p_0}/{q_0} \in Q^{\times }}$ , we have $({p_0}/{q_0})\cdot (1)_{p\in R^\times }\kern1.3pt{=}\kern1.3pt({p_0}/{q_0})\cdot (\phi _p)_{p\in R^\times }\kern1.3pt{=}\kern1.3pt(\phi _{pp_0}(q_0\cdot ))_{p\in R^\times }\kern1.3pt{=}\kern1.3pt(1)_{p\in R^\times }$ . So $Q^{\times }_{\phi }=Q^{\times }$ .

Lemma 3.3. Let R be an integral domain. Suppose that for $\epsilon>0$ , $(1)_{p \in R^\times }\neq (\phi _p)_{p\in R^\times } \in X_\infty (R)$ , $\pi \in \widehat {R_+}$ , $P \in R^\times $ and $r_1,r_2,\ldots , r_n \in R_+$ , there exist $p,q \in R^\times $ with $P \mid p$ such that $\vert \phi _{p}(qr_i)-\pi (r_i)\vert <\epsilon ,i=1,2,\ldots ,n$ . Then, $Q(X_\infty (R)/Q^\times )$ consists of only two points with the only nontrivial closed subset $\{[(1)_{p \in R^\times }]\}$ .

Proof. Since $\overline {Q^{\times } \cdot (1)_{p \in R^\times }}=\overline {(1)_{p \in R^\times }}=(1)_{p \in R^\times }$ , we have $[(\phi _p)_{p\in R^\times }] \neq [(1)_{p \in R^\times }]$ whenever $(1)_{p \in R^\times }\neq (\phi _p)_{p\in R^\times } \in X_\infty (R)$ .

Fix $(\phi _p)_{p\in R^\times }, (\psi _p)_{p\in R^\times } \in X_\infty (R)$ such that $(\phi _p)_{p\in R^\times }, (\psi _p)_{p\in R^\times } \neq (1)_{p \in R^\times }$ . We aim to show that $[(\phi _p)_{p\in R^\times }]=[(\psi _p)_{p\in R^\times }]$ . It suffices to show that $(\psi _p)_{p\in R^\times } \in \overline {Q^{\times } \cdot (\phi _p)_{p\in R^\times }}$ since $(\phi _p)_{p\in R^\times } \in \overline {Q^{\times } \cdot (\psi _p)_{p\in R^\times }}$ follows from the same argument. Fix $\epsilon>0$ , $p_1,p_2,\ldots ,p_n \in R^\times $ and $r_1,r_2,\ldots ,r_n \in R$ . By the condition imposed in the lemma, there exist $p_0,q_0 \in R^{\times }$ such that

$$ \begin{align*}\vert \phi_{p_1p_2\cdots p_np_0}(q_0p_1\cdots p_{i-1}p_{i+1}\cdots p_nr_j)-\psi_{p_1p_2\cdots p_n}(p_1\cdots p_{i-1}p_{i+1}\cdots p_nr_j)\vert<\epsilon\end{align*} $$

for $1\leq i,j\leq n$ . So $\vert \phi _{p_ip_0}(q_0r_j)-\psi _{p_i}(r_j)\vert <\epsilon $ for $1\leq i,j\leq n$ . Hence, $(\psi _p)_{p\in R^\times } \in \overline {Q^{\times } \cdot (\phi _p)_{p\in R^\times }}$ . Therefore, $[(\phi _p)_{p\in R^\times }]=[(\psi _p)_{p\in R^\times }]$ .

We conclude that $Q(X_\infty (R)/Q^\times )$ consists of only two points. For any $(1)_{p \in R^\times }\neq (\phi _p)_{p\in R^\times } \in X_\infty (R)$ , $\overline {Q^{\times } \cdot (\phi _p)_{p\in R^\times }}=X_\infty (R) \setminus \{(1)_{p \in R^\times }\}$ is open but not closed. Finally, we deduce that $\{[(1)_{p \in R^\times }]\}$ is the only nontrivial closed subset of $Q(X_\infty (R)/Q^\times )$ .

Theorem 3.4. Let R be an integral domain satisfying the condition of Lemma 3.3. Take an arbitrary element $(\phi _p)_{p\in R^\times } \in X_\infty (R)$ with $(1)_{p \in R^\times } \neq (\phi _p)_{p\in R^\times }$ . Then, we have $\mathrm {Prim}(C^*(R_+) \rtimes R^\times ) \cong \{[(\phi _p)_{p\in R^\times }]\} \amalg \{[(1)_{p \in R^\times }]\} \times \widehat {Q^\times }$ , and the open sets of ${\mathrm {Prim}(C^*(R_+) \rtimes R^\times )}$ comprise $\{[(\phi _p)_{p\in R^\times }]\} \amalg \{[(1)_{p \in R^\times }]\} \times N$ , where N is an open subset of $\widehat {Q^\times }$ .

Proof. By Theorem 2.2, $(C^*(R_+) \rtimes R^\times )$ is Morita equivalent to $C(X_\infty (R)) \rtimes Q^\times $ . So $\mathrm {Prim}(C^*(R_+) \rtimes R^\times ) \cong \mathrm {Prim}(C(X_\infty (R)) \rtimes Q^\times )$ . By Theorem 2.5 and Lemma 3.3, $\mathrm {Prim}(C(X_\infty (R)) \rtimes Q^\times ) \cong \{[(\phi _p)_{p\in R^\times }],[(1)_{p \in R^\times }]\} \times \widehat {Q^\times } /\approx $ . By Lemma 3.2, $Q^{\times }_{(\phi _p)_{p\in R^\times }}=\{1_R\}$ and $Q^{\times }_{(1)_{p \in R^\times }}=Q^{\times }$ . So, $\mathrm {Prim}(C(X_\infty (R)) \rtimes Q^\times ) \cong \{[(\phi _p)_{p\in R^\times }]\} \amalg \{[(1)_{p \in R^\times }]\} \times \widehat {Q^\times }$ . Hence, $\mathrm {Prim}(C^*(R_+) \rtimes R^\times ) \cong \{[(\phi _p)_{p\in R^\times }]\} \amalg \{[(1)_{p \in R^\times }]\} \times \widehat {Q^\times }$ , and the open sets of $\mathrm {Prim}(C^*(R_+) \rtimes R^\times )$ are $\{[(\phi _p)_{p\in R^\times }]\} \amalg \{[(1)_{p \in R^\times }]\} \times N$ , where N is an open subset of  $\widehat {Q^\times }$ .

Example 3.5. Let $R=\mathbb {Z}$ . Then, $\widehat {R_+}=\mathbb {T}$ . Fix $\epsilon>0$ , $(1)_{p \in \mathbb {Z}^\times }\neq (\phi _p)_{p\in \mathbb {Z}^\times } \in X_\infty (\mathbb {Z})$ , $\pi \in \mathbb {T}$ , $P \in \mathbb {Z}^\times $ and $r_1,r_2,\ldots , r_n \in \mathbb {Z}_+$ . Take an arbitrary $p_0 \in \mathbb {Z}^\times $ such that $P\mid p_0$ and let $\phi _{p_0}=e^{2\pi i \theta }$ for some $\theta \in (0,1)$ .

Case 1: $\theta $ is rational. Then, $\phi _{p_0}^{\mathbb {Z}}=\{e^{{2\pi i k}/{n}}\}_{k=0}^{n-1}$ for some $n \geq 1$ . Since $\phi _{pp_0}^p=\phi _{p_0}$ for any $p \geq 1$ , we get $\phi _{pp_0}^{\mathbb {Z}}=\{e^{{2\pi i k}/{pn}} \}_{k=0}^{pn-1}$ . Choose $p_1 \geq 1$ such that $\vert e^{{2\pi i}/{p_1n}}-1 \vert <\epsilon /\sum _{i=1}^{n}\vert r_i \vert $ . Then, there exists $q_0 \in \mathbb {Z}^\times $ such that $\vert \phi _{p_1p_0}^{q_0}-\pi \vert <\epsilon /\sum _{i=1}^{n}\vert r_i \vert $ .

Case 2: $\theta $ is irrational. Then, by the properties of an irrational rotation, $\{\phi _{p_0}^z\}_{z \in \mathbb {Z}}$ is a dense subset of $\mathbb {T}$ . So, there exists $q_0 \in \mathbb {Z}^\times $ such that $\vert \phi _{p_0}^{q_0}-\pi \vert <\epsilon /\sum _{i=1}^{n}\vert r_i \vert $ .

In both cases, there exist $p,q \in \mathbb {Z}^\times $ with $P \mid p$ such that $\vert \phi _{p}^{q}-\pi \vert <\epsilon /\sum _{i=1}^{n}\vert r_i \vert $ . For $1\leq i\leq n$ , we may assume that $r_i \geq 0$ and we calculate that

$$ \begin{align*} \vert\phi_{p}(qr_i)-\pi(r_i)\vert=\vert\phi_{p}^{qr_i}-\pi^{r_i}\vert =\vert \phi_{p}^{q}-\pi\vert\,\bigg\vert\sum_{j=0}^{r_i-1}\phi_{p}^{q(r_i-1-j)}\pi^{j}\bigg\vert &\leq\vert \phi_{p}^{q}-\pi\vert\sum_{j=0}^{r_i-1}\vert\phi_{p}^{q(r_i-1-j)}\pi^{j}\vert \\&<\epsilon r_i\Big/\sum_{i=1}^{n}\vert r_i \vert <\epsilon. \end{align*} $$

So, $\mathbb {Z}$ satisfies the condition of Lemma 3.3.

Example 3.6. Let $R=\mathbb {Z}[\sqrt {-3}]$ . Then, $\mathbb {Z}[\sqrt {-3}]_+\cong \mathbb {Z}^2$ and $\widehat {\mathbb {Z}[\sqrt {-3}]_+}\cong \mathbb {T}^2$ . Fix $\epsilon>0$ , $((1,1))_{p \in R^\times }\kern1.3pt{\neq}\kern1.3pt ((a_p,b_p))_{p\in R^\times } \kern1.3pt{\in}\kern1.3pt X_\infty (\mathbb {Z}[\sqrt {-3}])$ , $(\pi ,\rho ) \kern1.3pt{\in}\kern1.3pt \mathbb {T}^2$ , $P \kern1.4pt{\in}\kern1.4pt R^\times $ and $r_i\kern1.4pt{+}\kern1.4pt s_i\sqrt{-3} \kern1.4pt{\in}\kern1.4pt \mathbb{Z}[\sqrt{-3}]_+ \mathrm{for}\ i=1,2\ldots,n$ . Take an arbitrary $P \mid p_0 \in R^\times $ such that $(a_{p_0},b_{p_0}) \neq (1,1)$ . There exist $p,q=q_1+q_2\sqrt {-3} \in R^\times $ with $P \mid p$ such that $\vert a_{p}^{q_1}b_p^{q_2}-\pi \vert ,\vert a_p^{-3q_2}b_p^{q_1}-\rho \vert <{\epsilon }/{\sum _{i=1}^{n}(\vert r_i \vert +\vert s_i \vert )}$ . For $1\leq i\leq n$ , we may assume that $r_i \geq 0$ and we estimate

$$ \begin{align*} &\vert(a_p,b_p)(q(r_i+s_i\sqrt{-3}))-(\pi,\rho)(r_i+s_i\sqrt{-3})\vert \\&\quad=\vert (a_{p}^{q_1}b_p^{q_2})^{r_i}(a_p^{-3q_2}b_p^{q_1})^{s_i}-\pi^{r_i}\rho^{s_i}\vert \\&\quad=\vert ((a_{p}^{q_1}b_p^{q_2})^{r_i}-\pi^{r_i})(a_p^{-3q_2}b_p^{q_1})^{s_i}+\pi^{r_i}((a_p^{-3q_2}b_p^{q_1})^{s_i}-\rho^{s_i})\vert \\&\quad\leq\vert (a_{p}^{q_1}b_p^{q_2})^{r_i}-\pi^{r_i}\vert+\vert(a_p^{-3q_2}b_p^{q_1})^{s_i}-\rho^{s_i}\vert \\&\quad< \frac{\epsilon\vert r_i\vert}{\sum_{i=1}^{n}\vert r_i \vert+\vert s_i \vert}+\frac{\epsilon \vert s_i \vert}{\sum_{i=1}^{n}\vert r_i \vert+\vert s_i \vert} \leq\epsilon. \end{align*} $$

So, $\mathbb {Z}[\sqrt {-3}]$ satisfies the condition of Lemma 3.3.

By a similar argument to this example, we conclude that any (concrete) order of a number field satisfies the condition of Lemma 3.3. (For the background about number fields, one may refer to [Reference Neukirch22].)

Appendix The relationship between $C^*(R_+) \rtimes R^\times $ and semigroup $C^*$ -algebras

In this appendix, we show that $C^*(R_+) \rtimes R^\times $ is an extension of the boundary quotient of the opposite semigroup of the $ax+b$ -semigroup of the ring and that when the ring is a GCD domain, $C^*(R_+) \rtimes R^\times $ is isomorphic to the boundary quotient of the opposite semigroup of the $ax+b$ -semigroup of the ring.

Definition A.1 ([Reference Laca and Raeburn15, Section 2], [Reference Li19, Definition 2.13])

Let P be a semigroup, A be a unital $C^*$ -algebra and $\alpha :P \to \mathrm {End}(A)$ be a semigroup homomorphism such that $\alpha _p$ is injective for all $p \in P$ . Define the semigroup crossed product $A \rtimes _{\alpha } P$ to be the universal unital $C^*$ -algebra generated by the image of a unital homomorphism ${i_A:A \to A \rtimes _{\alpha } P}$ and a semigroup homomorphism $i_P:P \to \mathrm {Isom}(A \rtimes _{\alpha } P)$ satisfying the following conditions:

  1. (1) $i_P(p)i_A(a)i_P(p)^*=i_A(\alpha _p(a))$ for all $p \in P,a \in A$ ;

  2. (2) for any unital $C^*$ -algebra B, unital homomorphism $j_A:A \to B$ and semigroup homomorphism $j_P:P \to \mathrm {Isom}(B)$ satisfying $j_P(p)j_A(a)j_P(p)^*=j_A(\alpha _p(a))$ , there exists a unique unital homomorphism $\Phi :A \rtimes _{\alpha } P \to B$ such that $\Phi \circ i_A=j_A$ and $\Phi \circ i_P=j_P$ .

Remark A.2. We have $i_A(1_A)=i_P(1_P) = \mbox { the unit of } A \rtimes _{\alpha } P$ .

If $\alpha _p$ is unital for all $p \in P$ , then $i_P(p)$ is a unitary for any $p \in P$ . To see this, we calculate that $i_P(p)i_P(p)^*=i_P(p)i_A(1_A)i_P(p)^*=i_A(\alpha _p(1_A))=i_A(1_A)$ .

Notation A.3 [Reference Brownlowe, Ramagge, Robertson and Whittaker3, Reference Li19]

Let P be a semigroup. For $p \in P$ , we also denote by p the left multiplication map $q \mapsto pq$ . The set of constructible right ideals is defined to be

$$ \begin{align*} \mathcal{J}(P):=\{p_1^{-1}q_1\cdots p_n^{-1}q_nP:n \geq 1, p_1,q_1,\ldots, p_n,q_n \in P\} \cup \{\emptyset\}. \end{align*} $$

A finite subset $F \subset \mathcal {J}(P)$ is called a foundation set if for any nonempty $X \in \mathcal {J}(P)$ , there exists $Y \in F$ such that $X \cap Y \neq \emptyset $ .

Definition A.4 ([Reference Brownlowe, Ramagge, Robertson and Whittaker3, Remark 5.5], [Reference Li19, Definition 2.2])

Let P be a semigroup. Define the full semigroup $C^*$ -algebra $C^*(P)$ of P to be the universal unital $C^*$ -algebra generated by a family of isometries $\{v_p\}_{p \in P}$ and a family of projections $\{e_X\}_{X \in \mathcal {J}(P)}$ satisfying the following relations:

  1. (1) $v_p v_q=v_{pq}$ for all $p,q \in P$ ;

  2. (2) $v_p e_X v_p^*=e_{pX}$ for all $p \in P,X \in \mathcal {J}(P)$ ;

  3. (3) $e_\emptyset =0$ and $e_P=1$ ;

  4. (4) $e_X e_Y=e_{X \cap Y}$ for all $X,Y \in \mathcal {J}(P)$ .

Define the boundary quotient $\mathcal {Q}(P)$ of $C^*(P)$ to be the universal unital $C^*$ -algebra generated by a family of isometries $\{v_p\}_{p \in P}$ and a family of projections $\{e_X\}_{X \in \mathcal {J}(P)}$ satisfying conditions (1)–(4) and $\prod _{X \in F}(1-e_X)=0$ for any foundation set $F \subset \mathcal {J}(P)$ .

Definition A.5 ([Reference Brownlowe, Ramagge, Robertson and Whittaker3, Definition 2.1], [Reference Norling23, Definition 2.17])

Let P be a semigroup. Then, P is said to be right LCM (or to satisfy the Clifford condition) if the intersection of two principal right ideals is either empty or a principal right ideal.

Notation A.6. Let P be a semigroup. Denote by $P^{\mathrm {op}}$ the opposite semigroup of P. Let R be an integral domain. Denote by $R_+ \rtimes R^\times $ the $ax+b$ -semigroup of R. Denote by $\times $ the multiplication of $(R_+ \rtimes R^\times )^{\mathrm {op}}$ , that is, $(r_1,p_1)\times (r_2,p_2)=(r_2,p_2)(r_1,p_1)=(r_2+p_2r_1,p_1p_2)$ .

Remark A.7. Let R be an integral domain. We claim that any nonempty element of $\mathcal {J}((R_+ \rtimes R^\times )^{\mathrm {op}})$ is a foundation set of $(R_+ \rtimes R^\times )^{\mathrm {op}}$ . To see this, for any $(r_1,p_1),(r_2,p_2) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , we compute

$$ \begin{align*} (r_1,p_1) \times (p_1r_2,p_2)=(p_1r_2,p_2)(r_1,p_1) &=(p_1r_2+p_2r_1,p_1p_2) \\ &=(p_2r_1,p_1)(r_2,p_2) =(r_2,p_2)\times (p_2r_1,p_1). \end{align*} $$

Theorem A.8. Let R be an integral domain. Then, the crossed product $C^*(R_+) \rtimes R^\times $ is an extension of $\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ . Moreover, if R is a GCD domain (see [Reference Chapman and Glaz7]), then we have $C^*(R_+) \rtimes R^\times \cong \mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ .

Proof. Denote by $i_A:C^*(R_+) \to C^*(R_+) \rtimes R^\times $ and $i_P:R^{\times } \to \mathrm {Isom}(C^*(R_+) \rtimes R^\times )$ the canonical homomorphisms generating $C^*(R_+) \rtimes R^\times $ . Let $\{v_{(r,p)}:(r,p) \in (R_+ \rtimes R^\times )^{\mathrm {op}}\}$ be the family of isometries and $\{e_X:X \in \mathcal {J}((R_+ \rtimes R^\times )^{\mathrm {op}})\}$ be the family of projections generating $\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ .

For any $(r,p)\in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , note that $1-v_{(r,p)}v_{(r,p)}^*=1-e_{(r,p) \times (R_+ \rtimes R^\times )^{\mathrm {op}}}=0$ because $\{(r,p)\times (R_+ \rtimes R^\times )^{\mathrm {op}} \}$ is a foundation set. So each $v_{(r,p)}$ is a unitary.

For $r \in R_+$ , define $U_r:=v_{(r,1)}$ . For any $r,s \in R_+$ ,

$$ \begin{align*} U_r U_s=v_{(r,1)}v_{(s,1)}=v_{(s,1)(r,1)}=v_{(r+s,1)}=v_{(r,1)(s,1)}=v_{(s,1)}v_{(r,1)}=U_sU_r, \end{align*} $$

so $j_A:C^*(R_+) \to \mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}}),u_r \mapsto v_{(r,1)}$ is a homomorphism by the universal property of $C^*(R_+)$ . For $p \in R^\times $ , define $j_P(p):=v_{(0,p)}^*$ . For any $p,q \in R^\times $ ,

$$ \begin{align*} j_P(p)j_P(q)=v_{(0,p)}^*v_{(0,q)}^*=(v_{(0,q)}v_{(0,p)})^*=(v_{(0,p)(0,q)})^*=v_{(0,pq)}^*=j_P(pq), \end{align*} $$

so $j_P:R^{\times } \to \mathrm {Isom}(\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}}))$ is a semigroup homomorphism. For any $p \in R^\times $ , $r \in R_+$ , we compute

$$ \begin{align*} j_P(p)j_A(u_r)j_P(p)^*=v_{(0,p)}^*v_{(r,1)}v_{(0,p)}=v_{(0,p)}^*v_{(pr,p)}=v_{(pr,1)}=j_A(u_{pr})=j_A(\alpha_p(u_r)). \end{align*} $$

By the universal property of $C^*(R_+) \rtimes R^\times $ , there exists a unique homomorphism $\Phi :C^*(R_+) \rtimes R^\times \to \mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ such that $\Phi \circ i_A=j_A$ and $\Phi \circ i_P=j_P$ . Since $v_{(r,p)}=v_{(0,p)}v_{(r,1)}$ for any $(r,p) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , we see that $\Phi $ is surjective. So, $C^*(R_+) \rtimes R^\times $ is an extension of $\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ .

Now, we assume that R is a GCD domain. By [Reference Norling23, Proposition 2.23], $R^\times $ is right LCM. For $(r_1,p_1),(r_2,p_2) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , suppose that $p_1R^\times \cap p_2R^\times =pR^\times $ for some $p \in R^\times $ . We claim that

$$ \begin{align*}(r_1,p_1)\times (R_+ \rtimes R^\times)^{\mathrm{op}}\cap(r_2,p_2) \times (R_+ \rtimes R^\times)^{\mathrm{op}}=(0,p) \times (R_+ \rtimes R^\times)^{\mathrm{op}}.\end{align*} $$

Indeed, for any $(s_1,q_1),(s_2,q_2) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , if $(r_1,p_1)\times (s_1,q_1)=(r_2,p_2) \times (s_2,q_2)$ , then $(r_1,p_1)\times (s_1,q_1)=(r_2,p_2) \times (s_2,q_2)=(0,p) \times (s_1+q_1r_1,{q_1p_1}/{p})$ . Conversely, for any $(s,q) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ ,

$$ \begin{align*}(0,p) \times (s,q)=(r_1,p_1)\times \bigg(s-\frac{pqr_1}{p_1},\frac{pq}{p_1}\bigg)=(r_2,p_2) \times \bigg(s-\frac{pqr_2}{p_2},\frac{pq}{p_2}\bigg).\end{align*} $$

This proves the claim. Hence, $(R_+ \rtimes R^\times )^{\mathrm {op}}$ is right LCM as well.

Since $(R_+ \rtimes R^\times )^{\mathrm {op}}$ is right LCM, it follows from [Reference Starling24, Lemma 3.4] that ${\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})}$ is the universal unital $C^*$ -algebra generated by a family of unitaries $\{v_{(r,p)}:(r,p) \in (R_+ \rtimes R^\times )^{\mathrm {op}}\}$ satisfying the conditions:

  1. (1) $v_{(r_1,p_1)}v_{(r_2,p_2)}=v_{(r_1,p_1) \times (r_2,p_2)}$ ;

  2. (2) $v_{(r_1,p_1)}^*v_{(r_2,p_2)}=v_{(s_1,q_1)}v_{(s_2,q_2)}^*$ , whenever $(r_1,p_1)\times (s_1,q_1)=(r_2,p_2) \times (s_2,q_2)$ and $(r_1,p_1)\times (R_+ \rtimes R^\times )^{\mathrm {op}}\cap (r_2,p_2)\times (R_+ \rtimes R^\times )^{\mathrm {op}}=(r_1,p_1)\times (s_1,q_1)\times (R_+ \rtimes R^\times )^{\mathrm {op}}$ .

For $(r,p) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , define $V_{(r,p)}:=i_P(p)^*i_A(u_r)$ . Finally, we check that $\{V_{(r,p)}\}$ satisfies the above two conditions. For any $(r_1,p_1) ,(r_2,p_2) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ ,

$$ \begin{align*} V_{(r_1,p_1)}V_{(r_2,p_2)}&=i_P(p_1)^*i_A(u_{r_1})i_P(p_2)^*i_A(u_{r_2}) =i_P(p_1)^*i_P(p_2)^*i_A(\alpha_{p_2}(u_{r_1}))i_A(u_{r_2}) \\ &=(i_P(p_2)i_P(p_1))^*i_A(u_{p_2r_1})i_A(u_{r_2}) =i_P(p_1p_2)^*i_A(u_{r_2+p_2r_1}) \\ &=V_{(r_2+p_2r_1,p_1p_2)} =V_{(r_1,p_1) \times (r_2,p_2)}. \end{align*} $$

For $(r_1,p_1),(r_2,p_2) \in (R_+ \rtimes R^\times )^{\mathrm {op}}$ , suppose that $p_1R^\times \cap p_2R^\times =pR^\times $ for some $p \in R^\times $ . By the above claim, $(r_1,p_1)\times (R_+ \rtimes R^\times )^{\mathrm {op}}\cap (r_2,p_2)\times (R_+ \rtimes R^\times )^{\mathrm {op}}=(0,p)\times (R_+ \rtimes R^\times )^{\mathrm {op}}$ . It is not hard to see that $(r_1,p_1) \times (-{pr_1}/{p_1},{p}/{p_1})=(r_2,p_2) \times (-{pr_2}/{p_2},{p}/{p_2})=(0,p)$ . So,

$$ \begin{align*} V_{(r_1,p_1)}^*V_{(r_2,p_2)}&=i_A(u_{-r_1})i_P(p_1)i_P(p_2)^*i_A(u_{r_2}) =i_A(u_{-r_1})i_P\bigg(\frac{p}{p_1}\bigg)^*i_P\bigg(\frac{p}{p_2})i_A(u_{r_2}\bigg) \\ &=i_P\bigg(\frac{p}{p_1}\bigg)^*i_A(u_{-{pr_1}/{p_1}})i_A(u_{{pr_2}/{p_2}})i_P\bigg(\frac{p}{p_2}\bigg) \\&=V_{(-{pr_1}/{p_1},{p}/{p_1})}V_{(-{pr_2}/{p_2},{p}/{p_2})}^*. \end{align*} $$

By the universal property of $\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ , there exists a homomorphism ${\Psi :\mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}}) \to C^*(R_+) \rtimes R^\times }$ such that $\Psi (v_{(r,p)})=i_P(p)^*i_A(u_r)$ . Since

$$ \begin{align*} \Phi \circ \Psi(v_{(r,p)})=\Phi(i_P(p)^*i_A(u_r))=j_P(p)^*j_A(u_r)=v_{(0,p)}v_{(r,1)}=v_{(r,p)}, \end{align*} $$
$$ \begin{align*} \Psi\circ \Phi(i_A(u_r))=\Psi(j_A(u_r))=\Psi(v_{(r,1)})=i_A(u_r), \end{align*} $$
$$ \begin{align*} \Psi\circ \Phi(i_P(p))=\Psi(j_P(p))=\Psi(v_{(0,p)})^*=i_P(p), \end{align*} $$

we conclude that $C^*(R_+) \rtimes R^\times \cong \mathcal {Q}((R_+ \rtimes R^\times )^{\mathrm {op}})$ .

Acknowledgement

The first author thanks the second author for his encouragement and patient supervision.

Footnotes

The second author was supported by Fundamental Research Funds for the Central Universities (Grant No. 2023MS076).

References

Blackadar, B., Operator Algebras, Theory of ${C}^{\ast }$ -Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III (Springer-Verlag, Berlin, 2006).Google Scholar
Bost, J. B. and Connes, A., ‘Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory’, Selecta Math. (N.S.) 1 (1995), 411457.CrossRefGoogle Scholar
Brownlowe, N., Ramagge, J., Robertson, D. and Whittaker, M. F., ‘Zappa–Szép products of semigroups and their ${C}^{\ast }$ -algebras’, J. Funct. Anal. 266 (2014), 39373967.CrossRefGoogle Scholar
Bruce, C., Kubota, Y. and Takeishi, T., ‘Groupoid homology and $K$ -theory for algebraic actions from number theory’, Preprint, 2024, arXiv:2407.01952.Google Scholar
Bruce, C. and Li, X., ‘Algebraic actions II. Groupoid rigidity’, Preprint, 2023, arXiv:2301.04459.Google Scholar
Bruce, C. and Li, X., ‘Algebraic actions I. ${C}^{\ast }$ -algebras and groupoids’, J. Funct. Anal. 286 (2024), Article no. 110263.CrossRefGoogle Scholar
Chapman, S. T. and Glaz, S., Non-Noetherian Commutative Ring Theory (Kluwer Academic Publishers, Dordrecht, 2000).CrossRefGoogle Scholar
Cuntz, J., ‘ ${C}^{\ast }$ -algebras associated with the $ax+b$ -semigroup over $\mathbb{N}$ ’, in: $K$ -theory and Noncommutative Geometry, EMS Series of Congress Reports (eds. Cortiñas, G., Cuntz, J., Karoubi, M., Nest, R. and Weibel, C. A.) (European Mathematical Society, Zürich, 2008), 201215.Google Scholar
Cuntz, J., Deninger, C. and Laca, M., ‘ ${C}^{\ast }$ -algebras of Toeplitz type associated with algebraic number fields’, Math. Ann. 355 (2013), 13831423.CrossRefGoogle Scholar
Cuntz, J., Echterhoff, S. and Li, X., ‘On the $K$ -theory of crossed products by automorphic semigroup actions’, Q. J. Math. 64 (2013), 747784.CrossRefGoogle Scholar
Cuntz, J. and Li, X., ‘The regular ${C}^{\ast }$ -algebra of an integral domain’, in: Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings, 11 (eds. Blanchard, E., Ellwood, D., Khalkhali, M., Marcolli, M., Moscovici, H. and Popa, S.) (American Mathematical Society, Providence, RI, 2010), 149170.Google Scholar
Hirshberg, I., ‘On ${C}^{\ast }$ -algebras associated to certain endomorphisms of discrete groups’, New York J. Math. 8 (2002), 99109.Google Scholar
Kaliszewski, S., Omland, T. and Quigg, J., ‘Cuntz–Li algebras from $a$ -adic numbers’, Rev. Roumaine Math. Pures Appl. 59 (2014), 331370.Google Scholar
Laca, M., ‘From endomorphisms to automorphisms and back: dilations and full corners’, J. Lond. Math. Soc. (2) 61 (2000), 893904.CrossRefGoogle Scholar
Laca, M. and Raeburn, I., ‘Semigroup crossed products and the Toeplitz algebras of nonabelian groups’, J. Funct. Anal. 139 (1996), 415440.CrossRefGoogle Scholar
Laca, M. and Raeburn, I., ‘The ideal structure of the Hecke ${C}^{\ast }$ -algebra of Bost and Connes’, Math. Ann. 318 (2000), 433451.CrossRefGoogle Scholar
Larsen, N. S. and Li, X., ‘The 2-adic ring ${C}^{\ast }$ -algebra of the integers and its representations’, J. Funct. Anal. 262 (2012), 13921426.CrossRefGoogle Scholar
Li, X., ‘Ring ${C}^{\ast }$ -algebras’, Math. Ann. 348 (2010), 859898.CrossRefGoogle Scholar
Li, X., ‘Semigroup ${C}^{\ast }$ -algebras and amenability of semigroups’, J. Funct. Anal. 262 (2012), 43024340.CrossRefGoogle Scholar
Li, X., ‘Semigroup ${C}^{\ast }$ -algebras of $ax+b$ -semigroups’, Trans. Amer. Math. Soc. 368 (2016), 44174437.CrossRefGoogle Scholar
Li, X. and Norling, M. D., ‘Independent resolutions for totally disconnected dynamical systems. II. ${C}^{\ast }$ -algebraic case’, J. Operator Theory 75 (2016), 163193.CrossRefGoogle Scholar
Neukirch, J., Algebraic Number Theory (Springer-Verlag, Berlin, 1999).CrossRefGoogle Scholar
Norling, M. D., ‘Inverse semigroup ${C}^{\ast }$ -algebras associated with left cancellative semigroups’, Proc. Edinb. Math. Soc. (2) 57 (2014), 533564.CrossRefGoogle Scholar
Starling, C., ‘Boundary quotients of ${C}^{\ast }$ -algebras of right LCM semigroups’, J. Funct. Anal. 268 (2015), 33263356.CrossRefGoogle Scholar