Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:40:44.406Z Has data issue: false hasContentIssue false

PRESENTATION FOR RENNER MONOIDS

Part of: Semigroups

Published online by Cambridge University Press:  22 June 2010

EDDY GODELLE*
Affiliation:
Université de Caen, Laboratoire de mathématique Nicolas Oresme, 14032 Caen Cedex, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend the result obtained in E. Godelle [‘The braid rook monoid’, Internat. J. Algebra Comput.18 (2008), 779–802] to every Renner monoid: we provide a monoid presentation for Renner monoids, and we introduce a length function which extends the Coxeter length function and which behaves nicely.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie (Hermann, Paris, 1968), Chs IV–VI.Google Scholar
[2]Godelle, E., ‘The braid rook monoid’, Internat. J. Algebra Comput. 18 (2008), 779802.CrossRefGoogle Scholar
[3]Humphreys, J., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[4]Humphreys, J., Linear Algebraic Groups, Graduate Texts in Mathematics, 21 (Springer, Berlin, 1995).Google Scholar
[5]Li, Z., ‘The cross section lattices and Renner monoids of the odd special orthogonal algebraic monoids’, Semigroup Forum 66 (2003), 272287.CrossRefGoogle Scholar
[6]Li, Z., ‘Idempotent lattices, Renner monoids and cross section lattices of the special orthogonal algebraic monoids’, J. Algebra 270 (2003), 445458.CrossRefGoogle Scholar
[7]Li, Z. and Renner, L., ‘The Renner monoids and cell decompositions of the symplectic algebraic monoids’, Internat. J. Algebra Comput. 13 (2003), 111132.CrossRefGoogle Scholar
[8]Pennell, E., Putcha, M. and Renner, L., ‘Analogue of the Bruhat–Chevalley order for reductive monoids’, J. Algebra 196 (1997), 339368.CrossRefGoogle Scholar
[9]Putcha, M., Linear Algebraic Monoids, London Mathematical Society Lecture Note Series, 133 (Cambridge University Press, Cambridge, 1988).CrossRefGoogle Scholar
[10]Renner, L., Linear Algebraic Monoids, Encyclopaedia of Mathematical Sciences, 134, Invariant Theory and Algebraic Transformation Groups V (Springer, Berlin, 2005).Google Scholar
[11]Putcha, M. and Renner, L., ‘The system of idempotents and the lattice of 𝒥-classes of reductive algebraic monoids’, J. Algebra 116 (1988), 385399.CrossRefGoogle Scholar
[12]Rodrigues, O., ‘Note sur les inversions, ou dérangements produits dans les permutations’, J. Math. 4 (1839), 236239.Google Scholar
[13]Solomon, L., ‘The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field’, Geom. Dedicata 36 (1990), 1549.CrossRefGoogle Scholar
[14]Solomon, L., ‘An introduction to reductive monoids’, in: Semigroups, Formal Languages and Groups (ed. Fountain, J.) (Kluwer Academic Publishers, Dordrect, 1995), pp. 295352.CrossRefGoogle Scholar
[15]Solomon, L., ‘Representations of the rook monoid’, J. Algebra 256 (2002), 309342.CrossRefGoogle Scholar
[16]Solomon, L., ‘The Iwahori algebra of M n(F q). A presentation and a representation on tensor space’, J. Algebra 273 (2004), 206226.CrossRefGoogle Scholar