Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T21:29:34.710Z Has data issue: false hasContentIssue false

POSITIVE ALMOST PERIODIC SOLUTIONS FOR THE HEMATOPOIESIS MODEL VIA THE HILBERT PROJECTIVE METRIC

Published online by Cambridge University Press:  19 October 2016

HECHMI HATTAB*
Affiliation:
F. S. Sfax, Univercité de Sfax, Route de la Soukra km 4–Sfax–3038, Tunisia I. S. I. M. Gabès, Université de Gabès, Cité Erriadh, Zrig, 6072, Gabès, Tunisia email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this work is to prove the existence of a positive almost periodic solution to a multifinite time delayed nonlinear differential equation that describes the so-called hematopoiesis model. The approach uses the Hilbert projective metric in a cone. With some additional assumptions, we construct a fixed point theorem to prove the desired existence and uniqueness of the solution.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Coppel, W. A., ‘Dichotomy and reducibility’, J. Differential Equations 3 (1967), 500521.Google Scholar
Corduneanu, C., Almost Periodic Functions (Chelsea, New York, 1989).Google Scholar
Deimling, K., Nonlinear Functional Analysis (Springer, Berlin, 1985).Google Scholar
Diagana, T. and Zhou, H., ‘Existence of positive almost periodic solutions to the hematopoiesis model’, Appl. Math. Comput. 274 (2016), 644648.Google Scholar
Elhachmi, L., Contribution á L’étude Qualitative et Quantitative de Certaines Équations Fonctionnelles: Étude de cas D’équations Intégrales à Retard et de Type Neutre, Équations Différentielles et Équations aux Différences, PhD Thesis, Université Cadi Ayyad, Faculté des Sciences, Semlalia-Marrakech. 2010.Google Scholar
Fink, A. M., Almost Periodic Differential Equations, Lecture Notes on Mathematics, 377 (Springer, Berlin, 1974).Google Scholar
Liu, B. W., ‘New results on the positive almost periodic solutions for a model of hematopoiesis’, Nonlinear Anal. Real World Appl. 17 (2014), 252264.Google Scholar
Mackey, M. C. and Glass, L., ‘Oscillations and chaos in physiological control systems’, Science 197 (1977), 287289.Google Scholar
Saker, S. H., ‘Oscillation and global attractivity in hematopoiesis model with periodic coefficients’, Appl. Math. Comput. 142 (2003), 477494.Google Scholar
Smart, D. R., Fixed Point Theorems (Cambridge University Press, Cambridge, 1980).Google Scholar
Thompson, A. C., ‘On certain contraction mappings in a partially ordered vector space’, Proc. Amer. Math. Soc. 14 (1963), 438443.Google Scholar
Wang, X. and Zhang, H., ‘A new approach to the existence, nonexistence and uniqueness of positive almost periodic solution for a model of hematopoiesis’, Nonlinear Anal. Real World Appl. 11(1) (2010), 6066.Google Scholar
Wu, X., Li, J. and Zhou, H., ‘A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis’, Comput. Math. Appl. 54(6) (2007), 840849.Google Scholar
Zhang, H., Yang, M. Q. and Wang, L. J., ‘Existence and exponential convergence of the positive almost periodic solution for a model of hematopoiesis’, Appl. Math. Lett. 26 (2013), 3842.Google Scholar
Zhou, H., Wang, W. and Zhou, Z. F., ‘Positive almost periodic solution for a model of hematopoiesis with infinite time delays and a nonlinear harvesting term’, Abstr. Appl. Anal. 2013 (2013), 146729.Google Scholar