Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T21:34:47.423Z Has data issue: false hasContentIssue false

Polynomials biorthogonal to Appell's polynomials

Published online by Cambridge University Press:  17 April 2009

Edward D. Fackerell
Affiliation:
Department of Applied Mathematics, University of Sydney, Sydney, New South Wales;
R.A. Littler
Affiliation:
Department of Mathematics, Waikato University, Hamilton, New Zealand.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the solution of a long-standing problem, namely, the determination of a set of polynomials in two independent variables which are biorthogonal over a triangular region to a set of polynomials previously introduced by Appell. Some elementary properties of our polynomials are investigated.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Appell, , “Sur les séries hypergéométriques de deux variables, et sur des équations différentielles linéaires aux dérivées partielles”, C.R. Aoad. Sci. Paris 90 (1860), 296299.Google Scholar
[2]Appell, , “Sur les séries hypergéometriques de deux variables, et sur des équations différentielles linéaires simultanées aux dérivées partielles”, C.R. Aoad. Sci. Paris 90 (1860), 731–731.Google Scholar
[3]Appell, P., “Sur des polynômes de deux variables analogues aux polynômes de Jacobi”, Arch. Math. Phys. 66 (1881), 238245.Google Scholar
[4]Appell, , “Sur les fonctions hypergéométriques de deux variables”, J. Math. Pures Appl. (3) 8 (1882), 173216.Google Scholar
[5]Appell, P., Kampé de Fériet, J., Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite (Gauthier-Villars, Paris, 1926).Google Scholar
[6]Courant, R. and Hilbert, D., Methods of mathematical physics, Volume 1 (Interscience, New York, 1953).Google Scholar
[7]Erdélyi, Arthur, Magnus, Wilhelm, Oberhettinger, Fritz, Tricomi, Francesco G. (edited by), Higher transcendental functions, Volume I. Based, in part, on notes left by Harry Bateman. (McGraw-Hill, New York, Toronto, London, 1953.)Google Scholar
[7]Erdélyi, Arthur, Magnus, Wilhelm, Oberhettinger, Fritz, Tricomi, Francesco G. (edited by), Higher transcendental functions, Volume II. Based, in part, on notes left by Harry Bateman. (McGraw-Hill, New York, Toronto, London, 1953.)Google Scholar
[9]Karlin, Samuel and McGregor, James, “On some stochastic models in genetics”, Stochastic models in medicine and biology, 245279 (Proc. Sympos. University of Wisconsin, Madison, June 1963. University of Wisconsin Press, Madison, 1964).Google Scholar
[10]Kimura, Motoo, “Random genetic. drift in a tri-allelic locus; exact solution with a continuous model”, Biometrics 12 (1956), 5766.CrossRefGoogle Scholar