Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:35:33.841Z Has data issue: false hasContentIssue false

Permutation polynomials in one and several variables

Published online by Cambridge University Press:  17 April 2009

Rex W. Matthews
Affiliation:
Department of Mathematics, University of Tasmania, Hobart, Tasmania 7001, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1983

References

[1] Carlitz, L. and Hayes, J., “Permutations with coefficients in a subfield”, Acta Arith. 21 (1972), 131135.CrossRefGoogle Scholar
[2] Dickson, L.E., Linear groups (Dover, New York, 1958).Google Scholar
[3] Fried, M., “On a conjecture of Schur”, Michigan Math. J. 17 (1970), 4155.CrossRefGoogle Scholar
[4] Lausch, H., Müller, W. und Nöbauer, W., “Über die Struktur einer durch Dicksonpolynome dargestellten Permutationsgruppe des Restklassenringes modulo n”, J. Reine Angew. Math. 261 (1973), 8899.Google Scholar
[5] Lidl, R., “Tschebyscheffpolynome und die dadurch dargestellten Gruppen”, Monatsh. Math. 77 (1973), 132147.CrossRefGoogle Scholar
[6] Lidl, R., “Über die Struktur einer durch Tschebyscheffpolynome in 2 Variablen dargestellten Permutationsgruppe”, Beiträge Algebra Geom. 3 (1974), 4148.Google Scholar
[7] Lidl, R., “Tschebyscheffpolynome in mehreren Variablen”, J. Reine Angew. Math. 273 (1975), 178198.Google Scholar
[8] Lidl, R. and Niederreiter, H., “On orthogonal systems and permutation polynomials in several variables”, Acta Arith. 22 (1973), 257265.CrossRefGoogle Scholar
[9] Lidl, R. and Wells, C., “Chebyshev polynomials in several variables”, J. Reine Angew. Math. 255 (1972), 104111.Google Scholar
[10] Matthews, R., “Orthogonal systems of polynomials over a finite field with coefficients in a subfield”, Contemporary mathematics, 9, 295302 (American Mathematical Society, Providence, Rhode Island, 1982).Google Scholar
[11] Matthews, R., “Some generalisations of Chebyshev polynomials and their induced group structure over a finite field”, Acta Arith. 41 (1982), 323335.CrossRefGoogle Scholar
[12] Matthews, R., “The structure of the group of permutations induced by Chebyshev polynomial vectors over the ring of integers mod m”, J. Austral. Math. Soc. Ser. A 32 (1982), 88103.CrossRefGoogle Scholar
[13] Matthews, R., “Permutation polynomials over rings of algebraic integers”, J. Number Theory (to appear).Google Scholar
[14] Niederreiter, H., “Orthogonal systems of polynomials in finite fields”, Proc. Amer. Math. Soc. 28 (1971), 415422.CrossRefGoogle Scholar
[15] Niederreiter, H. and Lo, S., “Permutation polynomials over rings of algebraic integers”, Abh. Math. Sem. Univ. Hamburg 49 (1979), 126139.CrossRefGoogle Scholar