No CrossRef data available.
Article contents
OPERATOR KERNELS FOR IRREDUCIBLE REPRESENTATIONS OF EXPONENTIAL LIE GROUPS
Published online by Cambridge University Press: 01 October 2008
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A nine-dimensional exponential Lie group G and a linear form ℓ on the Lie algebra of G are presented such that for all Pukanszky polarizations 𝔭 at ℓ the canonically associated unitary representation ρ=ρ(ℓ,𝔭) of G has the property that ρ(ℒ1(G)) does not contain any nonzero operator given by a compactly supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be repaired.
Keywords
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 78 , Issue 2 , October 2008 , pp. 301 - 316
- Copyright
- Copyright © 2008 Australian Mathematical Society
References
[1]Abdennadher, J. and Molitor-Braun, C., ‘Operator kernels for irreducible unitary representations of solvable exponential Lie groups’, J. Lie Theory 16 (2006), 225–238.Google Scholar
[3]Howe, R., ‘On a connection between nilpotent groups and oscillator integrals associated to singularities’, Pacific J. Math. 73 (1977), 329–363.Google Scholar
[4]Leptin, H., ‘Irreduzible darstellungen von exponentialgruppen und operatoren mit glatten Kernen’, J. Reine Angew. Math. 494 (1998), 1–34.CrossRefGoogle Scholar
[5]Leptin, H. and Ludwig, J., Unitary Representation Theory of Exponential Lie Groups, Expositions in Mathematics, 18 (de Gruyter, Berlin, 1994).CrossRefGoogle Scholar
[6]Ludwig, J., ‘Irreducible representations of exponential solvable Lie groups and operators with smooth kernels’, J. Reine Angew. Math. 339 (1983), 1–26.Google Scholar
[7]Ludwig, J. and Molitor-Braun, C., ‘Exponential actions, orbits and their kernels’, Bull. Austral. Math. Soc. 57 (1998), 497–513.Google Scholar
[8]Molitor-Braun, C., ‘Actions exponentielles et noyaux d’opérateurs’ Travaux mathématiques, IX (Centre Universitaire, Luxembourg, 1997), pp. 23–101.Google Scholar
[9]Poguntke, D., ‘Gewisse Segalsche Algebren Auf Lokalkompakten Gruppen’, Arch. Math. 33 (1979), 454–460.Google Scholar
[10]Poguntke, D., ‘Nichtsymmetrische sechsdimensionale Liesche Gruppen’, J. Reine Angew. Math. 306 (1979), 154–176.Google Scholar
[11]Poguntke, D., ‘Algebraically irreducible representations of L 1-algebras of exponential Lie groups’, Duke Math. J. 50 (1983), 1077–1106.Google Scholar
You have
Access