Article contents
ON THE TOTAL DISTANCE AND DIAMETER OF GRAPHS
Published online by Cambridge University Press: 03 May 2018
Abstract
The total distance (or Wiener index) of a connected graph $G$ is the sum of all distances between unordered pairs of vertices of $G$. DeLaViña and Waller [‘Spanning trees with many leaves and average distance’, Electron. J. Combin.15(1) (2008), R33, 14 pp.] conjectured in 2008 that if $G$ has diameter $D>2$ and order $2D+1$, then the total distance of $G$ is at most the total distance of the cycle of the same order. In this note, we prove that this conjecture is true for 2-connected graphs.
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.
References
- 2
- Cited by