Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:26:31.522Z Has data issue: false hasContentIssue false

On the number of zeros of exponential polynomials and related questions

Published online by Cambridge University Press:  17 April 2009

A.J. van der Poorten
Affiliation:
Centre for Number Theory Research, Macquarie University, NSW 2109, Australia, [email protected]
I.E. Shparlinski
Affiliation:
Mosfilmovskaja Str dom 2 kv 41, Moscoe 119285, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We apply Straßmann's theorem to p–adic power series satisfying linear differential equations with polynomial coefficients and note that our approach leads to our estimating the number of integer zeros of polynomials on a given interval and thence to an investigation of the number of p–adic small values of a function on such an interval, that is, of the number of solutions of a congruence modulo pr.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Cassels, J.W.S., ‘An embedding theorem for fields’, Bull. Austral. Math. Soc. 14 (1976), 193198.CrossRefGoogle Scholar
[2]Evertse, J.-H., ‘On sums of S-units and linear recurrences’, Comp. Math. 53 (1984), 225244.Google Scholar
[3]van der Poorten, A.J., ‘Zeros of p–adic exponential polynomials’, Indag. Math. 38 (1976), 4649.CrossRefGoogle Scholar
[4]van der Poorten, A.J., ‘Some facts that should be better known, especially about rational functions’, Number theory and applications, Editor Mollin, R. A., pp. 497528 (Kluwer Academic Publ., The Netherlands, 1989).Google Scholar
[5]van der Poorten, A.J. and Rumely, R., ‘Zeros of p–adic exponential polynomials II’, J. London Math. Soc. 36 (1987), 115.CrossRefGoogle Scholar
[6]van der Poorten, A.J. and Schlickewei, H.P., ‘Zeros of recurrence sequences’, Bull. Austral Math. Soc. 44 (1991), 215223.CrossRefGoogle Scholar
[7]van der Poorten, A.J. and Schlickewei, H.P., ‘Additive relations in fields’, J. Austral Math. Soc. 51 (1991), 154170.CrossRefGoogle Scholar
[8]Shparlinski, I.E., ‘О числе различных простых делителеи рекуррентных последоватељностеи’, Мат. Заметки 42, pp. 494–507. ‘On the number of different prime divisors of recurrence sequences’ Matem. Notes 42 (1987), 773780.Google Scholar
[9]Shparlinski, I.E., ‘О некоторых арифметических своиствах рекурентных последоватељносеи’, Матем. Заметки 47 (1990), 124131, ‘On some arithmetical properties of recurrence sequencesMatem. Notes 47 (1990).Google Scholar
[10]Shparlinski, I.E., ‘О полиномиаљных сравнеиях’ (‘On polynomial congruences’), Acta Arith. 58 (1991), 153156.CrossRefGoogle Scholar
[11]Stepanov, S.A. and Shparlinski, I.E., ‘On the construction of primitive elements and primitive normal bases in a finite field’ in Computational number theory, pp. 114 (Walter de Gruyter & Co., Berlin, 1991).Google Scholar
[12]Straßmann, R., ‘Uber den Wertevorrat von Potenzreihen im Gebiet der p–adischen ZahlenJ. für Math. 159 (1928), 1328.Google Scholar
[13]Voorhoeve, M., van der Poorten, A. J. and Tijdeman, R., ‘On the number of zeros of certain functionsIndag. Math. 37 (1975), 405414.Google Scholar