Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T19:04:44.207Z Has data issue: false hasContentIssue false

ON THE HARMONIC ZYGMUND SPACES

Published online by Cambridge University Press:  11 March 2020

MUNIRAH ALJUAID
Affiliation:
Department of Mathematics, Northern Borders University, Arar 73222, Saudi Arabia email [email protected]
FLAVIA COLONNA*
Affiliation:
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA email [email protected]

Abstract

In this paper we study a class ${\mathcal{Z}}_{H}$ of harmonic mappings on the open unit disk $\mathbb{D}$ in the complex plane that is an extension of the classical (analytic) Zygmund space. We extend to the elements of this class a characterisation that is valid in the analytic case. We also provide a similar result for a closed separable subspace of ${\mathcal{Z}}_{H}$ which we call the little harmonic Zygmund space.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljuaid, M. and Colonna, F., ‘Characterizations of Bloch-type spaces of harmonic mappings’, J. Funct. Spaces 2019 (2019), article ID 5687343.Google Scholar
Aljuaid, M. and Colonna, F., ‘Composition operators on some Banach spaces of harmonic mappings’, J. Funct. Spaces 2020 (2020), article ID 9034387.Google Scholar
Chen, S., Ponnusamy, S. and Wang, X., ‘Harmonic mappings in Bergman spaces’, Monatsh. Math. 170 (2013), 325342.10.1007/s00605-012-0448-zCrossRefGoogle Scholar
Chen, S. and Wang, X., ‘On harmonic Bloch spaces in the unit ball of ℂn’, Bull. Aust. Math. Soc. 84 (2011), 6778.10.1017/S0004972711002164CrossRefGoogle Scholar
Colonna, F., ‘Bloch and normal functions and their relation’, Rend. Circ. Mat. Palermo (2) 38(2) (1989), 161180.10.1007/BF02843992CrossRefGoogle Scholar
Colonna, F., ‘The Bloch constant of bounded harmonic mappings’, Indiana Univ. Math. J. 38(4) (1989), 829840.10.1512/iumj.1989.38.38039CrossRefGoogle Scholar
Duren, P., Theory of H p Spaces, Pure and Applied Mathematics, 38 (Academic Press, New York, 1970).Google Scholar
Duren, P., Harmonic Mappings in the Plane (Cambridge University Press, Cambridge, 2004).10.1017/CBO9780511546600CrossRefGoogle Scholar
Esmaeili, K. and Lindström, M., ‘Weighted composition operators between Zygmund type spaces and their essential norms’, Integral Equations Operator Theory 75 (2013), 473490.10.1007/s00020-013-2038-4CrossRefGoogle Scholar
Girela, D., ‘Analytic functions of bounded mean oscillation’, in: Complex Function Spaces (Mekrijärvi, 1999), Univ. Joensuu Dept. Math. Rep. Ser. No. 4 (Joensuun Yliopistopaino, Joensuu, 2001), 61170.Google Scholar
Ye, S. and Hu, Q., ‘Weighted composition operators on the Zygmund space’, Abstr. Appl. Anal. 2012 (2012), article ID 462482.10.1155/2012/462482CrossRefGoogle Scholar
Yoneda, R., ‘A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation’, Proc. Edinb. Math. Soc. (2) 45 (2002), 229239.CrossRefGoogle Scholar
Zhu, K., ‘Bloch type spaces of analytic functions’, Rocky Mountain J. Math. 23 (1993), 11431177.10.1216/rmjm/1181072549CrossRefGoogle Scholar
Zygmund, A., Trigonometric Series (Cambridge University Press, Cambridge, 1959).Google Scholar