Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T20:18:32.061Z Has data issue: false hasContentIssue false

ON THE FIRST EIGENCONE FOR THE FINSLER LAPLACIAN

Published online by Cambridge University Press:  16 March 2016

QIAOLING XIA*
Affiliation:
School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we characterise the structure of the eigencone for the Finsler Laplacian corresponding to the first Dirichlet eigenvalue on a compact Finsler manifold with a smooth boundary.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann–Finsler Geometry (Springer, New York, 2000).CrossRefGoogle Scholar
Chavel, I., Eigenvalues in Riemannian Geometry (Academic Press, Orlando, Florida, 1984).Google Scholar
Ge, Y. and Shen, Z., ‘Eigenvalues and eigenfunctions of metric measure manifolds’, Proc. Lond. Math. Soc. 82 (2001), 725746.CrossRefGoogle Scholar
Gilbarg, G. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, second edition, Grundlehren der Mathematischen Wissenschaften, 224 (Springer, Berlin–New York, 1983).Google Scholar
Lindqvist, P., ‘On the equation div(|𝛻u| p-2𝛻u) +𝜆 |u| p-2 u = 0’, Proc. Amer. Math. Soc. 109(1) (1990), 157164.Google Scholar
Shen, Z., ‘The non-linear Laplacian for Finsler manifolds’, in: The Theory of Finsler Laplacians and Applications, Mathematics and its Applications, 459 (Kluwer Academic, Dordrecht, 1998), 187197.CrossRefGoogle Scholar
Shen, Z., Lectures on Finsler Geometry (World Scientific, Singapore, 2001).CrossRefGoogle Scholar
Trudinger, N. S., ‘On Harnack type inequalities and their application to quasilinear elliptic equations’, Comm. Pure Appl. Math. 20(4) (1967), 721747.CrossRefGoogle Scholar
Wang, G. and Xia, C., ‘A sharp lower bound for the first eigenvalue on Finsler manifolds’, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 983996.CrossRefGoogle Scholar
Xia, Q., ‘A sharp lower bound for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature’, Nonlinear Anal. 117 (2015), 189199.CrossRefGoogle Scholar