Published online by Cambridge University Press: 04 March 2022
We consider sums involving the divisor function over nonhomogeneous (
$\beta \neq 0$
) Beatty sequences
$ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $
and show that
where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$ . Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $ .