No CrossRef data available.
Published online by Cambridge University Press: 08 March 2024
We prove the following conjecture of Z.-W. Sun [‘On congruences related to central binomial coefficients’, J. Number Theory 13(11) (2011), 2219–2238]. Let p be an odd prime. Then $$ \begin{align*} \sum_{k=1}^{p-1}\frac{\binom{2k}k}{k2^k}\equiv-\frac12H_{{(p-1)}/2}+\frac7{16}p^2B_{p-3}\pmod{p^3}, \end{align*} $$
where $H_n$ is the nth harmonic number and
$B_n$ is the nth Bernoulli number. In addition, we evaluate
$\sum _{k=0}^{p-1}(ak+b)\binom {2k}k/2^k$ modulo
$p^3$ for any p-adic integers
$a, b$.
The author was funded by the National Natural Science Foundation of China (grant nos. 12001288, 12071208).