Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T22:06:13.938Z Has data issue: false hasContentIssue false

ON QUOTIENTS OF VALUES OF EULER’S FUNCTION ON FACTORIALS

Published online by Cambridge University Press:  17 November 2021

AYAN NATH*
Affiliation:
Kaliabor College, Assam, India
ABHISHEK JHA
Affiliation:
Indraprastha Institute of Information Technology, New Delhi, India e-mail: [email protected]

Abstract

We investigate, for given positive integers a and b, the least positive integer $c=c(a,b)$ such that the quotient $\varphi (c!\kern-1.2pt)/\varphi (a!\kern-1.2pt)\varphi (b!\kern-1.2pt)$ is an integer. We derive results on the limit of $c(a,b)/(a+b)$ as a and b tend to infinity and show that $c(a,b)>a+b$ for all pairs of positive integers $(a,b)$ , with the exception of a set of density zero.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baczkowski, D., Filaseta, M., Luca, F. and Trifonov, O., ‘On values of $d\left(n!\right)/ m!$ , $\phi \left(n!\right)/ m!$ and $\sigma \left(n!\right)/ m!$ ’, Int. J. Number Theory 6(6) (2010), 11991214.CrossRefGoogle Scholar
Edgar, T., ‘Totienomial coefficients’, Integers 14 (2014), Article no. A62, 7 pages.Google Scholar
Erdős, P., ‘Aufgabe 557’, Elem. Math. 23 (1968), 111113.Google Scholar
Erdős, P., Graham, R. L., Ruzsa, I. Z. and Straus, E. G., ‘On the prime factors of $\left(\genfrac{}{}{0pt}{}{2n}{n}\right)$ ’, Math. Comp. 29 (1975), 8392.CrossRefGoogle Scholar
Luca, F., ‘Fibonacci numbers with the Lehmer property’, Bull. Pol. Acad. Sci. Math. 55(1) (2007), 715.CrossRefGoogle Scholar
Luca, F. and Shparlinski, I. E., ‘Arithmetic functions with linear recurrence sequences’, J. Number Theory 125(2) (2007), 459472.CrossRefGoogle Scholar
Luca, F. and Stănică, P., ‘On the Euler function of the Catalan numbers’, J. Number Theory 132(7) (2012), 14041424.Google Scholar
Luca, F. and Stănică, P., ‘Monotonic phinomial coefficients’, Bull. Aust. Math. Soc. 95(3) (2017), 365372.CrossRefGoogle Scholar
The PARI Group, PARI/GP version 2.11.2. http://pari.math.u-bordeaux.fr/.Google Scholar