Article contents
ON NONINNER AUTOMORPHISMS OF FINITE NONABELIAN
$p$-GROUPS
Published online by Cambridge University Press: 07 June 2013
Abstract
A long-standing conjecture asserts that every finite nonabelian $p$-group has a noninner automorphism of order
$p$. In this paper the verification of the conjecture is reduced to the case of
$p$-groups
$G$ satisfying
${ Z}_{2}^{\star } (G)\leq {C}_{G} ({ Z}_{2}^{\star } (G))= \Phi (G)$, where
${ Z}_{2}^{\star } (G)$ is the preimage of
${\Omega }_{1} ({Z}_{2} (G)/ Z(G))$ in
$G$. This improves Deaconescu and Silberberg’s reduction of the conjecture: if
${C}_{G} (Z(\Phi (G)))\not = \Phi (G)$, then
$G$ has a noninner automorphism of order
$p$ leaving the Frattini subgroup of
$G$ elementwise fixed [‘Noninner automorphisms of order
$p$ of finite
$p$-groups’, J. Algebra 250 (2002), 283–287].
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright ©2013 Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:45950:20160414053126817-0021:S0004972713000403_inline17.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:3292:20160414053126817-0021:S0004972713000403_inline18.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:65681:20160414053126817-0021:S0004972713000403_inline19.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:80761:20160414053126817-0021:S0004972713000403_inline20.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:40959:20160414053126817-0021:S0004972713000403_inline21.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:9951:20160414053126817-0021:S0004972713000403_inline22.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:62646:20160414053126817-0021:S0004972713000403_inline23.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:55073:20160414053126817-0021:S0004972713000403_inline24.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:11179:20160414053126817-0021:S0004972713000403_inline25.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:14240:20160414053126817-0021:S0004972713000403_inline26.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:62963:20160414053126817-0021:S0004972713000403_inline27.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:84760:20160414053126817-0021:S0004972713000403_inline28.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:14710:20160414053126817-0021:S0004972713000403_inline29.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:67232:20160414053126817-0021:S0004972713000403_inline30.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:96201:20160414053126817-0021:S0004972713000403_inline31.gif?pub-status=live)
- 8
- Cited by