Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T13:01:03.606Z Has data issue: false hasContentIssue false

ON 𝒯-NONCOSINGULAR MODULES

Published online by Cambridge University Press:  02 July 2009

DERYA KESKIN TÜTÜNCÜ*
Affiliation:
Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey (email: [email protected])
RACHID TRIBAK
Affiliation:
DĂ©partement de MathĂ©matiques, FacultĂ© des Sciences de TĂ©touan, B.P. 21.21, TĂ©touan, Morocco (email: [email protected])
*
✉For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we introduce 𝒯-noncosingular modules. Rings for which all right modules are𝒯-noncosingular are shown to be precisely those for which every simple right module is injective. Moreover, for any ring R we show that the right R-module R is 𝒯-noncosingular precisely when R has zero Jacobson radical. We also study the 𝒯-noncosingular condition in association with (strongly) FI-lifting modules.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Birkenmeier, G. F., MĂŒller, B. J. and Rizvi, S. T., ‘Modules in which every fully invariant submodule is essential in a direct summand’, Comm. Algebra 30(3) (2002), 1395–1415.Google Scholar
[2]Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R., ‘Lifting modules’, in: Supplements and Projectivity in Module Theory, Frontiers in Mathematics (BirkhĂ€user, Basel, 2006).Google Scholar
[3]Ganesan, L. and Vanaja, N., ‘Modules for which every submodule has a unique coclosure’, Comm. Algebra 30(5) (2002), 2355–2377.Google Scholar
[4]Inoue, T., ‘Sum of hollow modules’, Osaka J. Math. 20 (1983), 331–336.Google Scholar
[5]Keskin, D., ‘Discrete and quasi-discrete modules’, Comm. Algebra 30(11) (2002), 5273–5282.Google Scholar
[6]Kosan, T., ‘The lifting condition and fully invariant submodules’, East–West J. Math. 7(1) (2005), 99–106.Google Scholar
[7]Mohamed, S. H. and MĂŒller, B. J., Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147 (Cambridge University Press, Cambridge, 1990).Google Scholar
[8]Rizvi, S. T. and Roman, C. S., ‘On 𝒩-nonsingular modules and applications’, Comm. Algebra 35 (2007), 1–22.Google Scholar
[9]Sharpe, D. W. and Vamos, P., Injective Modules (Cambridge University Press, Cambridge, 1972).Google Scholar
[10]Talebi, Y. and Vanaja, N., ‘Torsion theory cogenerated by M-small modules’, Comm. Algebra 30(3) (2002), 1449–1460.CrossRefGoogle Scholar
[11]Wisbauer, R., Foundations of Module and Ring Theory (Gordon and Breach, Philadelphia, PA, 1991).Google Scholar
[12]Zöschinger, H., ‘Komplementierte Moduln ĂŒber Dedekindringen’, J. Algebra 29 (1974), 42–56.CrossRefGoogle Scholar