Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T22:59:11.219Z Has data issue: false hasContentIssue false

ON NEAR EXACT BANACH FRAMES IN BANACH SPACES

Published online by Cambridge University Press:  01 October 2008

P. K. JAIN
Affiliation:
Department of Mathematics, University of Delhi, Delhi 110 007, India (email: [email protected])
S. K. KAUSHIK*
Affiliation:
Department of Mathematics, Kirori Mal College, University of Delhi, Delhi 110 007, India (email: [email protected])
NISHA GUPTA
Affiliation:
Department of Mathematics, University of Delhi, Delhi 110 007, India (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Near exact Banach frames are introduced and studied, and examples demonstrating the existence of near exact Banach frames are given. Also, a sufficient condition for a Banach frame to be near exact is obtained. Further, we consider block perturbation of retro Banach frames, and prove that a block perturbation of a retro Banach frame is also a retro Banach frame. Finally, it is proved that if E and F are both Banach spaces having Banach frames, then the product space E×F has an exact Banach frame.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

Footnotes

The research of the third author was supported by the Council of Scientific and Industrial Research (CSIR), India (vide letter no. 9/45(595)/2005-EMR-I dated 08.09.2005).

References

[1]Casazza, P. G. and Chiristensen, O., ‘Perturbation of operators and applications to frame theory’, J. Fourier Anal. Appl. 3 (1997), 543557.Google Scholar
[2]Casazza, P. G. and Christensen, O., ‘Frames containing a Riesz basis and preservation of this property under perturbations’, SIAM J. Math. Anal. 29(1) (1998), 266278.Google Scholar
[3]Casazza, P. G., Han, D. and Larson, D. R., ‘Frames for Banach spaces’, Contemp. Math. 247 (1999), 149182.CrossRefGoogle Scholar
[4]Christensen, O. and Heil, C., ‘Perturbation of Banach frames and atomic decompositions’, Math. Nachr. 185 (1997), 3347.Google Scholar
[5]Coifman, R. R. and Weiss, G., ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. 83 (1977), 569645.Google Scholar
[6]Daubechies, I., Grossmann, A. and Meyer, Y., ‘Painless non-orthogonal expansions’, J. Math. Phys. 27 (1986), 12711283.Google Scholar
[7]Duffin, R. J. and Schaeffer, A. C., ‘A class of non-harmonic Fourier series’, Trans. Amer. Math. Soc. 72 (1952), 341366.CrossRefGoogle Scholar
[8]Favier, S. J. and Zalik, R. A., ‘On stability of frames and Riesz bases’, Appl. Comput. Harmon. Anal. 2 (1995), 160173.CrossRefGoogle Scholar
[9]Feichtinger, H. G. and Gröchenig, K., ‘A unified approach to atomic decompositions via integrable group representations’, in: Function Spaces and Applications (Lund, 1986), Lecture Notes in Mathematics, 1302 (Springer, Berlin, 1988), pp. 5273.Google Scholar
[10]Gröchenig, K., ‘Describing functions: atomic decompositions versus frames’, Monatsh. Math. 112 (1991), 141.CrossRefGoogle Scholar
[11]Holub, J. R., ‘Pre-frame operators, Besselian frames and near-Riesz basis in Hilbert spaces’, Proc. Amer. Math. Soc. 122 (1994), 779785.Google Scholar
[12]Jain, P. K., Kaushik, S. K. and Vashisht, L. K., ‘Banach frames for conjugate Banach spaces’, Z. Anal. Anwendungen 23(4) (2004), 713720.CrossRefGoogle Scholar
[13]Jain, P. K., Kaushik, S. K. and Vashisht, L. K., ‘On perturbations of Banach frames’, Int. J. Wavelet Multiresolut. Inf. Process. 4(3) (2006), 559565.CrossRefGoogle Scholar
[14]Jain, P. K., Kaushik, S. K. and Vashisht, L. K., ‘On Banach frames’, Indian J. Pure Appl. Math. 37(5) (2006), 265272.Google Scholar
[15]Singer, I., Bases in Banach Spaces. II (Springer, New York, 1981).Google Scholar
[16]Wilansky, A., Topology for Analysis (Robert E. Krieger Publishing Co. Inc., Melbourne, FL, 1983).Google Scholar