Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:17:27.619Z Has data issue: false hasContentIssue false

ON MINIMAL DEGREES OF PERMUTATION REPRESENTATIONS OF ABELIAN QUOTIENTS OF FINITE GROUPS

Published online by Cambridge University Press:  28 September 2011

CLARA FRANCHI*
Affiliation:
Dipartimento di Matematica e Fisica ‘Niccolò Tartaglia’, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a finite group G, we denote by μ(G) the minimum degree of a faithful permutation representation of G. We prove that if G is a finite p-group with an abelian maximal subgroup, then μ(G/G′)≤μ(G).

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Dixon, J. D. and Mortimer, B., Permutation Groups (Springer, New York, 1996).CrossRefGoogle Scholar
[2]Easdown, D., ‘Minimal faithful permutation and transformation representations of groups and semigroups’, Contemp. Math. 131 (1992), 7584.CrossRefGoogle Scholar
[3]Easdown, D. and Praeger, C. E., ‘On the minimal faithful degree of a finite group’, Research Report, School of Mathematics and Statistics, University of Western Australia, 1987.Google Scholar
[4]Easdown, D. and Praeger, C. E., ‘On minimal faithful permutation representations of finite groups’, Bull. Aust. Math. Soc. 38 (1988), 207220.CrossRefGoogle Scholar
[5]Flannery, D. L., ‘The finite irredicible linear 2-groups of degree 4’, Mem. Amer. Math. Soc. 129(613) (1997).Google Scholar
[6]Holt, D. F. and Walton, J., ‘Representing the quotient group of a finite permutation group’, J. Algebra 248 (2002), 307333.CrossRefGoogle Scholar
[7]Johnson, D. L., ‘Minimal permutation representations of finite groups’, Amer. J. Math. 93 (1971), 857866.CrossRefGoogle Scholar
[8]Karpilovsky, G. I., ‘The least degree of a faithful representation of abelian groups’, Vestn. Khar’k. Univ. 53 (1970), 107115 (in Russian).Google Scholar
[9]Kovács, L. G. and Praeger, C. E., ‘Finite permutation groups with large abelian quotients’, Pacific J. Math. 136 (1989), 283292.CrossRefGoogle Scholar
[10]Kovács, L. G. and Praeger, C. E., ‘On minimal faithful permutation representations of finite groups’, Bull. Aust. Math. Soc. 62(2) (2000), 311317.CrossRefGoogle Scholar
[11]Neumann, P. M., ‘Some algorithms for computing with finite permutation groups’, in: Proceedings of Groups–St. Andrews 1985, London Mathematical Society Lecture Notes, 121 (eds. Robertson, E. F. and Campbell, C. M.) (Cambridge University Press, Cambridge, 1987), pp. 5992.CrossRefGoogle Scholar
[12]Ore, O., ‘Contributions to the theory of groups of finite order’, Duke Math. J. 5 (1939), 431460.CrossRefGoogle Scholar
[13]Ore, O., ‘Theory of monomial groups’, Trans. Amer. Math. Soc. 51 (1942), 1564.CrossRefGoogle Scholar
[14]Powsner, A., ‘Über eine Substitutionsgruppe kleinster Grades, die einer gegebenen Abelschen Gruppe isomorph ist’, Commun. Inst. Sci. Math. et Mécan., Univ. Kharkoff et Soc. Math. Kharkoff, IV. s. 14 (1937), 151157 (translated from Russian); Autorreferat, Zbl. 0019.15506.Google Scholar
[15]Robinson, D. J. S., A Course in the Theory of Groups (Springer, New York, 1982).CrossRefGoogle Scholar
[16]Wright, D., ‘Degrees of minimal embeddings for some direct products’, Amer. J. Math. 97 (1975), 897903.CrossRefGoogle Scholar