Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T03:25:35.514Z Has data issue: false hasContentIssue false

ON FIXED POINTS OF GENERALIZED SET-VALUED CONTRACTIONS

Published online by Cambridge University Press:  23 July 2009

S. BENAHMED
Affiliation:
ENSET D’Oran, BP 1523 El Ménaouer, 31000 Oran, Algérie (email: [email protected])
D. AZÉ*
Affiliation:
Institut de Mathématiques de Toulouse UMR CNRS 5219, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 4, France (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a variational method introduced in [D. Azé and J.-N. Corvellec, ‘A variational method in fixed point results with inwardness conditions’, Proc. Amer. Math. Soc.134(12) (2006), 3577–3583], deriving directly from the Ekeland principle, we give a general result on the existence of a fixed point for a very general class of multifunctions, generalizing the recent results of [Y. Feng and S. Liu, ‘Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings’, J. Math. Anal. Appl.317(1) (2006), 103–112; D. Klim and D. Wardowski, ‘Fixed point theorems for set-valued contractions in complete metric spaces’, J. Math. Anal. Appl.334(1) (2007), 132–139]. Moreover, we give a sharp estimate for the distance to the fixed-points set.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Azé, D., ‘A survey on error bounds for lower semicontinuous functions’, ESAIM Proc. 13 (2003), 117.CrossRefGoogle Scholar
[2]Azé, D. and Corvellec, J.-N., ‘A variational method in fixed point results with inwardness conditions’, Proc. Amer. Math. Soc. 134(12) (2006), 35773583.Google Scholar
[3]Diaz, J. B. and Margolis, B., ‘A fixed point theorem of the alternative, for contractions on a generalized complete metric space’, Bull. Amer. Math. Soc. 74 (1968), 305309.Google Scholar
[4]Ekeland, I., ‘On the variational principle’, J. Math. Anal. Appl. 47 (1974), 324353.Google Scholar
[5]Ekeland, I., ‘Nonconvex minimization problems’, Bull. Amer. Math. Soc. 1 (1979), 443474.CrossRefGoogle Scholar
[6]Feng, Y. and Liu, S., ‘Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings’, J. Math. Anal. Appl. 317(1) (2006), 103112.CrossRefGoogle Scholar
[7]Hamel, A., ‘Remarks to an equivalent formulation of Ekeland’s variational principle’, Optimization 31(3) (1994), 233238.CrossRefGoogle Scholar
[8]Klim, D. and Wardowski, D., ‘Fixed point theorems for set-valued contractions in complete metric spaces’, J. Math. Anal. Appl. 334(1) (2007), 132139.Google Scholar
[9]Mizoguchi, N. and Takahashi, W., ‘Fixed point theorem for multivalued mappings on complete metric spaces’, J. Math. Anal. Appl. 141 (1989), 177188.CrossRefGoogle Scholar
[10]Nadler, S. B., ‘Multivalued contraction mappings’, Pacific J. Math. 30 (1969), 475488.CrossRefGoogle Scholar
[11]Penot, J.-P., ‘The drop theorem, the petal theorem and Ekeland’s variational principle’, Nonlinear Anal. 10 (1986), 813822.CrossRefGoogle Scholar
[12]Reich, S., ‘Fixed points of contractive functions’, Boll. Unione Mat. Ital. 5(4) (1972), 2642.Google Scholar
[13]Semenov, P. V., ‘Fixed points of multivalued contractions’, Funct. Anal. Appl. 36(2) (2002), 159161.CrossRefGoogle Scholar
[14]Takahashi, W., Existence theorems generalizing fixed point theorems for multivalued mappings, in Fixed Point Theory and Applications (Marseille, 1989), Pitman Res. Notes Math. Ser., 252, (Longman, Harlow, 1991) pp. 397–406.Google Scholar
[15]Weston, J. D., ‘A characterization of metric completeness’, Proc. Amer. Math. Soc. 64 (1977), 186188.Google Scholar