Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T08:36:37.731Z Has data issue: false hasContentIssue false

On cohomological deformations of bicrossed product Hopf algebras

Published online by Cambridge University Press:  17 April 2009

Jeong Hee Hong
Affiliation:
Department of Applied MathematicsKorea Maritime UniversityPusan 606-791Korea e-mail: [email protected]
Wojciech Szymański
Affiliation:
Department of MathematicsThe University of NewcaslteNewcastle NSW 2308Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct and describe two classes of examples of twisted bicrossed product Hopf algebras corresponding to matched pairs of finite groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Enock, M. and Vainerman, L., ‘Deformation of the Kac algebra by an Abelian subgroup’, Comm. Math. Phys. 178 (1996), 571596.CrossRefGoogle Scholar
[2]Hong, J.H. and Kosaki, H., ‘The group of one dimensional bimodules arising from composition of subfactors’, J. Math. Soc. Japan (to appear).Google Scholar
[3]Hong, J.H. and Szymański, W., ‘Composition of subfactors and twisted bicrossed products’, J. Operator Theory 37 (1997), 281302.Google Scholar
[4]Izumi, M. and Kosaki, H., ‘Finite-dimensional Kac algebras arising from certain group actions on a factor’, Internat. Math. Res. Notices 8 (1996), 357370.CrossRefGoogle Scholar
[5]Kac, G.I., ‘Extensions of groups to ring groups’, Math. USSR-Sb. 5 (1968), 451474.CrossRefGoogle Scholar
[6]Majid, S., Foundations of quantum group theory (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[7]Masuoka, A., ‘Calculations of some groups of Hopf algebra extensions’, J. Algebra 191 (1997), 568588.CrossRefGoogle Scholar
[8]Masuoka, A., ‘Twisted forms and cohomology of Hopf algebra extensions’, (preprint).Google Scholar
[19]Nikshych, D., ‘K 0-rings and twisting of finite dimensional semisimple Hopf algebras’, (preprint).Google Scholar
[10]Vainerman, L., ‘2-cocycles and twisting of Kac algebras’, Comm. Math. Phys. 191 (1998), 397721.CrossRefGoogle Scholar
[11]Wang, S., ‘Rieffel type discrete deformation of finite quantum groups’, (preprint).Google Scholar